Tìm x biết
x(2x-1)(x+5)-(2x2+1)(x+4,5)=3,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình
nối MP
Xét t/g MNP có: AM=AN(gt),BN=BP(gt)
=>AB là đường tb của t/g MNP
=>AB//MP và AB=1/2MP (1)
Xét t/g MQP có: MD=DQ(gt),QC=CP(gt)
=>CD là đường tb của t/g MQP
=.CD//MP và CD=1/2MP(2)
Từ (1) và (2) => AB=CD (3)
Lại có:AB//MP, CD//MP
=>AB//CD (4)
Từ (3)và (4) => tứ giác ABCD là HBH
a/ Từ M dựng đường thẳng // AB cắt AD tại H ta có
\(AB\perp AD;\)MH//AB \(\Rightarrow MH\perp AD\)
Mà BC//AD
=> ABMH là hình bình hành => AB=MH
\(\Rightarrow S_{AMD}=\frac{AD.MH}{2}=\frac{AD.AB}{2}=\frac{S_{ABCD}}{2}\left(dpcm\right)\)
b/
\(\frac{S_{ABM}}{S_{DCM}}=\frac{\frac{1}{2}.BM.AB}{\frac{1}{2}.CM.CD}=\frac{BM}{CM}=\frac{1}{3}\) (do ABCD là HCN nên AB=CD)
\(\left(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\right):\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}-\frac{2x-y}{x\left(y-x\right)}\right):\left(\frac{y}{xy}-\frac{x}{xy}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}+\frac{2x-y}{x\left(x-y\right)}\right):\left(\frac{y-x}{xy}\right)\)
\(=\left(\frac{x^2}{xy\left(x-y\right)}+\frac{\left(2x-y\right)y}{xy\left(x-y\right)}\right):\left(\frac{y-x}{xy}\right)\)
\(=\frac{x^2+2xy-y^2}{xy\left(x-y\right)}.\frac{xy}{-\left(x-y\right)}=\frac{x^2+2xy-y^2}{-\left(x-y\right)}\)
\(x^3+5x^2-4x-20=0\)
\(\Leftrightarrow x^2\left(x+5\right)-4\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\Leftrightarrow x=\pm2;-5\)
Sửa đề : \(\left(\frac{2x}{2x+y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)
\(=\left(\frac{2x}{2x+y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)
\(=\left(\frac{2x\left(2x+y\right)-4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x-2x-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=\frac{2xy}{\left(2x+y\right)^2}.\frac{\left(2x-y\right)\left(2x+y\right)}{-y}=-\frac{2xy\left(2x-y\right)}{\left(2x+y\right)y}\)
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{2\left(1+x^2\right)+2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{4\left(1+x^4\right)+4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{8\left(1+x^8\right)+8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}=\frac{16\left(1+x^{16}\right)+16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}=\frac{32}{1-x^{32}}\)
a) x^2 - 2xy + y^2 - xz + yz
= (x^2 - 2xy + y^2 ) - (xz + yz)
= (x - y)^2 - z(x + y)
= (x - y)(x - x + y)
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow x\left(2x^2+10x-x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\)
\(\Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\)
\(\Leftrightarrow-6x=8\Leftrightarrow x=-\frac{4}{3}\)
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow\left(2x^2-x\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow\left(2x^3+9x^2-5x\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\)
\(\Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\)
\(\Leftrightarrow-6x-4,5=3,5\)
\(\Leftrightarrow-6x=3,5+4,5\)
\(\Leftrightarrow-6x=8\)
\(\Leftrightarrow x=-\frac{8}{6}=-\frac{4}{3}\)