K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

bài này thật ra không khó chỉ cần tách đúng là được à bạn thử ngồi tách xem đi 

16 tháng 8 2017

rồi được rồi nhưng hơi dài nên mình sẽ viết 2 lần nhé

ĐỀ THIBỘ GIÁO DỤC VÀ ĐÀO TẠOVĨNH LONGĐỀ CHÍNH THỨCKIỂM TRA HỌC KÌ I - NĂM HỌC 2020 - 2021Môn: NGỮ VĂN - Lớp 9Thời gian: 90 phút (Không kể thời gian phát đề)I. ĐỌC HIỂU: (4.0 điểm)Đọc văn bản sau và trả lời các câu hỏi bên dưới:Tôi lớn lên đã thấy dừa trước ngõDừa ru tôi giấc ngủ tuổi thơCứ mỗi chiều nghe dừa reo trước gióTôi hỏi nội tôi: “Dừa có tự bao giờ?”Nội nói:...
Đọc tiếp

ĐỀ THI

BỘ GIÁO DỤC VÀ ĐÀO TẠO

VĨNH LONG

ĐỀ CHÍNH THỨC

KIỂM TRA HỌC KÌ I - NĂM HỌC 2020 - 2021

Môn: NGỮ VĂN - Lớp 9

Thời gian: 90 phút (Không kể thời gian phát đề)

I. ĐỌC HIỂU: (4.0 điểm)

Đọc văn bản sau và trả lời các câu hỏi bên dưới:

Tôi lớn lên đã thấy dừa trước ngõ

Dừa ru tôi giấc ngủ tuổi thơ

Cứ mỗi chiều nghe dừa reo trước gió

Tôi hỏi nội tôi: “Dừa có tự bao giờ?”

Nội nói: “Lúc nội còn con gái

Đã thấy bóng dừa mát rượi trước sân

Đất này xưa đầm lầy chua mặn

Đời đói nghèo cay đắng quanh năm”

[...]

Vẫn như xưa vườn dừa quê nội

Sao lòng tôi vẫn thấy yêu hơn

Ôi thân dừa đã hai lần máu chảy

Biết bao đau thương, biết mấy oán hờn.

(Theo Lê Anh Xuân, Dừa ơi, thivien.net)

1) Chỉ ra một câu thơ có biện pháp tu từ nhân hóa. (0.5 điểm)

2) Người bà muốn nói điều gì về cây dừa qua đoạn thơ in đậm? (0.5 điểm)

3) Kể tên các phương châm hội thoại. (0.5 điểm)

 

Với câu hỏi của cháu, câu trả lời: “Lúc nội còn con gái/ Đã thấy bóng dừa mát rượi trước sân” của bà tuân thủ hay vi phạm phương châm hội thoại về chất? Vì sao bà lại nói như thế? (0.5 điểm)

4) Hãy thuyết minh về công dụng của quả dừa trong các lĩnh vực của đời sống. (bằng đoạn văn khoảng 100 chữ) (2.0 điểm)

0
NM
25 tháng 1 2021

ta có 

\(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}\Rightarrow7x=2\left(2m-1\right)+3m+2=7m\Rightarrow x=m\Rightarrow y=m+1}\)

a. khi m=1 ta có hệ nghiệm là \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

b. để \(x^2+y^2=5\Leftrightarrow m^2+\left(m+1\right)^2=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)

c.\(x-3y>0\Leftrightarrow m-3\left(m+1\right)>0\Leftrightarrow-2m-3>0\Leftrightarrow m< -\frac{3}{2}\)

25 tháng 5 2017

Ta có: \(x^2+y^2+z^2=1\)

\(\Rightarrow0\le x^2,y^2,z^2\le1\)

Theo đề bài thì:

\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)

\(\Rightarrow P\le1\)

Dấu = xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

18 tháng 4 2020

Với \(x^2+y^2+z^2=1\),ta có:

\(P=xy+yz+zx+\frac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\right]\)

\(=xy+yz+zx+x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\)

\(=x^2y^2+y^2z^2+z^2x^2+xy\left(1-z^2\right)+yz\left(1-x^2\right)+zx\left(1-y^2\right)\)

\(=x^2y^2+y^2z^2+z^2x^2+xy\left(x^2+y^2\right)+yz\left(y^2+z^2\right)+zx\left(z^2+x^2\right)\)

\(=\frac{2x^2y^2+2y^2z^2+2z^2x^2+\left(x^2+y^2\right)^2+\left(y^2+z^2\right)^2+\left(z^2+x^2\right)^2}{2}\)

\(=\frac{2\left(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2\right)}{2}=\frac{2\left(x^2+y^2+z^2\right)^2}{2}=1\)

Đẳng thức xảy ra khi \(x=y=z=\pm\frac{\sqrt{3}}{3}\)

DD
22 tháng 1 2021

Tam giác \(ABO\)vuông tại \(O\). Do đó điểm \(O\)luôn thuộc đường tròn đường kính \(AB\)(trừ 2 điểm \(A\)và \(B\)).

A B C D O

Ta đã biết rằng hai đường chéo hình thoi vuông góc với nhau, vậy điểm O nhìn AB cố định dưới góc 90o.

Quỹ tích điểm O là nửa đường tròn đường kính AB

Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán

Cách dựng:

+ Dựng đoạn thẳng BC = 6cm.

+ Dựng cung chứa góc 40º trên đoạn thẳng BC (tương tự bài 46) :

Dựng tia Bx sao cho Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dựng tia By ⊥ Bx.

Dựng đường trung trực của BC cắt By tại O.

Dựng đường tròn (O; OB).

Cung lớn BC chính là cung chứa góc 40º dựng trên đoạn BC.

+ Dựng đường thẳng d song song với BC và cách BC một đoạn 4cm:

Lấy D là trung điểm BC.

Trên đường trung trực của BC lấy D’ sao cho DD’ = 4cm.

Dựng đường thẳng d đi qua D’ và vuông góc với DD’.

+ Đường thẳng d cắt cung lớn BC tại A.

Ta được ΔABC cần dựng.

Chứng minh:

+ Theo cách dựng có BC = 6cm.

+ A ∈ cung chứa góc 40º dựng trên đoạn BC

Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ A ∈ d song song với BC và cách BC 4cm

⇒ AH = DD’ = 4cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài.

Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.

O A B C D I E K

Ta có :

\(\frac{KC}{sin\widehat{CAK}}=\frac{R\sqrt{2}}{sin\widehat{AKC}}=\frac{R\sqrt{2}}{sin\widehat{AED}}=\frac{AE}{sin\widehat{ADE}}=\frac{AE}{sin\widehat{BIE}}=\frac{AE}{sin\widehat{AIE}}=\frac{3R}{\sqrt{2}}\)

\(\Rightarrow sin\widehat{AKC}=\frac{2}{3}\)

\(\Rightarrow AK=\frac{2}{3R}\)

áp dụng định lý Py ta go vào \(\Delta AOK\) ta được

\(AK^2=AO^2+OK^2\)

\(\Rightarrow OK=\sqrt{R^2-\frac{4}{9R^2}}=\sqrt{9R^4-4}\)

\(\Rightarrow DK=OD-OK=R-\sqrt{9R^4-4}\)

23 tháng 1 2021

\(AK=\frac{2}{\sqrt{3}}R\) chứ bạn?

O A B C D E

a, vì \(AD\) là tia phân giác của góc \(\widehat{BAC}\) \(\Rightarrow\widehat{BAD}=\widehat{EAC}\)

mà \(\widehat{ABD}=\widehat{ABC}=\widehat{AEC}\) 

\(\Rightarrow\Delta ABD~\Delta AEC\) (g-g)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AC}\Leftrightarrow AB.AC=AE.AD\)

b, Ta có :

\(\widehat{EBD}=\widehat{EBC}=\widehat{EAC}=\widehat{BAE}\)

\(\Rightarrow\Delta EBD~\Delta EAB\)(g-g)

\(\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Leftrightarrow ED.EA=EB^2\)

25 tháng 2 2021

a)xét ΔABE và ΔADC có :

BÅE = DÅC (gt)

AEB=ACB=ACD(cùng chắn cung AB)

=>ΔABE≈ΔADC(g.g)

\(\dfrac{AE}{AC}=\dfrac{AB}{AD}\)(hai cạnh t.ứ)

⇒AE.AD=AC.AB

b)Xét ΔBED và ΔAEB có :

góc E chung

góc EBD=gócEAC=gócEAB

ΔBED  ΔAEB(g.g)

\(\dfrac{ED}{EB}=\dfrac{EB}{EA}\)(hai cạnh t.ứ)

⇒ED.EA=EB2