K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

cần hình ib mình mình gửi cho nhé =) 

a) 

Vì (O) và (O′) cắt nhau tại hai điểm A và B nên OO′ vuông AB ( định lý )

- Xét tam giác ADC

 Có OO′ là đường trung bình ( vì O là trung điểm AC , O′ là trung điểm của AD)

Nên => OO′ // CD 

=>  AB vuông CD ( Quan hệ từ vuông góc đến song song )

Xét tam giác ADC 

Có AC = AD ( vì hai đường tròn (O) và (O′) có cùng bán kính )

=> Tam giác ACD cân tại A có AB là đường cao nên AB cũng là đường trung tuyến

 =>  BC = BD hay cung BC = cung BD  (vì (O) và (O′)  là hai đường tròn bằng nhau )

b) Xét đường tròn (O′) có A , E , D cùng thuộc đường tròn và AD là đường kính nên tam giác AED vuông tại E

\(\Rightarrow DE\perp AC\Rightarrow\widehat{DEC}=90^o\)

- Xét \(\Delta DEC\)vuông tại E có B là trung điểm DC ( cmt )

\(\Rightarrow EB=\frac{DC}{2}=BD=EB\)

=> Cung EB = cung BD ( định lý )

 Do đó B là điểm chính giữa cung ED

 


 

19 tháng 2 2021

Giải:

Nối M và K

Xét (O) có: \(\hat{AMK}\) là góc nội tiếp chắn cung nhỏ AK

                 \(\hat{KAB}\)  là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ AK

\(\Rightarrow\) \(\hat{AMK}\) = \(\hat{KAB}\) ( cùng = 1/2 cung nhỏ AK )  (1)

Xét (O') có : \(\hat{BMK}\) là góc nội tiếp chắn cung nhỏ BK

                    \(\hat{KBA}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ BK

\(\Rightarrow\) \(\hat{BMK}\) = \(\hat{KBA}\) ( cùng =1/2 cung nhỏ BK ) (2)

Từ (1) và (2) \(\Rightarrow\) \(\hat{AMK}\)+\(\hat{BMK}\)=\(\hat{KAB}\)\(\hat{KBA}\)

                      \(\Leftrightarrow\) \(\hat{AMB}\) = 50° = \(\hat{KAB}\) + \(\hat{KBA}\)

Xét △ KAB có: \(\hat{AKB}\) +(\(\hat{KAB}\) + \(\hat{KBA}\) )= 180° ( Tổng ba góc trong một tam giác)

                      \(\Leftrightarrow\) \(\hat{AKB}\) + 50° = 180°

                      \(\Leftrightarrow\)\(\hat{AKB}\) = 180°-50°

                    \(\Leftrightarrow\)\(\hat{AKB}\) = 130°

Vậy \(\hat{AKB}\) có số đo là 130°

 

30 tháng 1 2021

1000

A B C 0 H D

Vẽ đường kính AD và AH⊥BC(H∈BC).

Ta có \(\widehat{ACD}\)ACD^ là góc nội tiếp chắn nửa đường tròn ⇒ACD^=900.

Xét ΔABH và ΔADC có:


AHB^=ACD^=900;


ABH^=ADC^ \(\widehat{ABH}=\widehat{ADC}\)(hai góc nội tiếp cùng chắn cung AC);

⇒ΔABH∼ΔADC(g.g)⇒AHAC=ABAD⇒515=82R⇒2R=24⇔R=12(cm)

19 tháng 1 2021

\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)

+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)

+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)

+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : sinA=BKAB ; sinB=AHAB ; sinC=AHAC

⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAH

⇒csinC=bsinB (1)

Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC

⇒asinA=csinC (2)

Từ (1) và (2) ta có : asinA=bsinB=csinC (Đpcm)

15 tháng 11 2017

Căn phòng hình vuông có kích thước là 21 lần cạnh viên gạch.

Các viên gạch men trắng nằm trên 2 đường chéo nên số viên là: 21 + 21 - 1 = 41 (viên)

(Chú ý trừ đii 1 do cạnh hình vuông lẻ nên hai đường chéo có chung 1 ô).

Số viên gạch men xanh là số ô còn lại và bằng:

    441 - 41 = 400 (viến)

ĐS: 400 viên xanh

15 tháng 11 2017

Gọi cạnh hình vuông chứa số viên gạch là x
mà diện tích hình vuông x^2 =441 viên
=>x = 21
vậy cạnh hình vuông chứa 21viên gach.;
vì& loại men trắng nằm trên hai đường chéo của nền nhà.
=>mỗi hàng chứa 2 viên gạch .

Riêng hàng số 11, ô số 11
chỉ chứa 1 viên (vì giao điểm của hai đường chéo)
Nên số viên gạch trắng là:

      2 x 20 +1 =41 (viên)
số viên gạch xanh là :

      441- 41 =400 (viên gạch)

          Đáp số : 400 viên gạch men xanh.

18 tháng 1 2021

Từ gt => \(\Delta OAB\)  vuông tại B và \(\Delta OAC\) vuông tại C

\(\Rightarrow\widehat{OAB}+\widehat{AOB}=90^o,\widehat{OAC}+\widehat{AOC}=90^o\)

\(\Rightarrow\left(\widehat{OAB}+\widehat{OAC}\right)+\left(\widehat{AOB}+\widehat{AOC}\right)=180^O\)

Hay \(\widehat{BAC}+\widehat{BOC}=180^O\Rightarrow\widehat{BOC}=180^o-\alpha\)

\(\Rightarrow\) số đo \(\widebat{BmC}=180^o-\alpha\)  và số đo \(\widebat{BnC=180^o+\alpha}\)

22 tháng 1 2021
NM
18 tháng 1 2021

A B C O

Xét tam giascOAC cân tại O nên ta có góc \(\widehat{CAO}=\widehat{ACO}\)

mà ta có \(sd \widebat{BC}=\widehat{BOC}=\widehat{OCA}+\widehat{CAO}=2\widehat{CAO}=2\widehat{CAB}\)

vajay ta cos dpcm

18 tháng 1 2021

Vẽ đường kính AK

+) Dễ có: ^KBC = ^KAC (2 góc nội tiếp cùng chắn cung KC) (1)

+) ^ABK là góc nội tiếp chắn nửa đường tròn nên ^ABK = 900

 Có: ^KBC + ^CBA = ^ABK = 900 (cmt)

       ^BAH + ^CBA = 900 (∆ABH vuông tại H)

Từ đó suy ra ^KBC = ^BAH                                                    (2)

Từ (1) và (2) suy ra ^BAH = ^KAC hay ^BAH = ^OAC (đpcm)

18 tháng 1 2021

Kẻ đường kính AE của đường tròn ( O) . Ta thấy \(\widehat{ACE}=90^o\)( góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\widehat{OAC}+\widehat{AEC}=90^o\) (1)

Theo gt, ta có: \(\widehat{BAH}+\widehat{ABC}=90^O\) (2)

Lại có: \(\widehat{AEC}=\widehat{ABC}\) (3)

Từ (1), (2), (3) => đpcm