K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

a/ \(3^{x+1}=9^x=3^{2x}\Rightarrow x+1=2x\Leftrightarrow x=1\)

b/ \(2^{3x+2}=4^{x+5}=2^{2x+10}\Rightarrow3x+2=2x+10\Leftrightarrow x=8\)

c/ \(3^{2x-1}=243=3^5\Rightarrow2x-1=5\Leftrightarrow x=3\)

28 tháng 10 2020

x=yx44444444444444444444444444444

2 tháng 11 2020

Đặt \(x+\frac{1}{x}=t\)thì \(x^2+\frac{1}{x^2}=t^2-2\)

Lúc đó: \(y=f\left(x\right)=t^2-2+2t+8=\left(t^2+2t+1\right)+5=\left(t+1\right)^2+5\ge5\)

Đẳng thức xảy ra khi \(t=x+\frac{1}{x}=-1\Leftrightarrow x^2+x+1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{3}{4}\)\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{\sqrt{3}}{2}i\\x+\frac{1}{2}=-\frac{\sqrt{3}}{2}i\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}i-1}{2}\\x=\frac{-\sqrt{3}i-1}{2}\end{cases}}\)

28 tháng 10 2020

toán: 

số thứ nhất là:

(290+70): 2= 180

số thứ hai là:

(290-70) : 2= 110

Đ/s:.....

1= 4

2=8

3=12

4= 16

28 tháng 10 2020

4=1 vi 1=4 o tren 

28 tháng 10 2020

bạn bố láo vừ thôi bạn Tô Nhật Ạnh ạ

28 tháng 10 2020

TÔ NHẬT ANH LÀ 1 ĐỨA MẤT DAIJIIII.

26 tháng 10 2020

x+7 \(⋮\) 2x+3 

=> 2x+ 14  \(⋮\) 2x+3 

=> (2x+3)+ 11  \(⋮\) 2x+3 

=> 11\(⋮\) 2x+3 

=> 2x+3 \(\in\) \(Ư\) (11) 

=

={±1;±11}

Ta lập bảng sau :

2x+3         -1          1        -11        11

x             -2           -1        -7          4

vậy x \(\in\) \(\left\{-2;-1;-7;4\right\}\)


 

27 tháng 10 2020

A B C O E F

Áp dụng định lý dường phân giác: "Trong tam giác đường phân giác của một góc chia cạnh đối diện thành 2 đoạn thảng tỷ lệ với hai cạnh kề hai đoạn ấy"

Xét tg BCE có 

\(\frac{BO}{EO}=\frac{BC}{CE}\Rightarrow\frac{BO}{BC}=\frac{EO}{CE}=\frac{BO+EO}{BC+CE}=\frac{BE}{BC+CE}\Rightarrow\frac{BO}{BE}=\frac{BC}{BC+CE}\) 

Xét tg BCF có

\(\frac{CO}{FO}=\frac{BC}{BF}\Rightarrow\frac{CO}{BC}=\frac{FO}{BF}=\frac{CO+FO}{BC+BF}=\frac{CF}{BC+BF}\Rightarrow\frac{CO}{CF}=\frac{BC}{BC+BF}\)

\(\Rightarrow\frac{BO}{BE}.\frac{CO}{CF}=\frac{BC.BC}{\left(BC+CE\right)\left(BC+CF\right)}=\frac{BC^2}{\left(BC+CE\right)\left(BC+BF\right)}=\frac{1}{2}\)

\(\Rightarrow2.BC^2=\left(BC+CE\right)\left(BC+BF\right)=BC^2+BC.BF+BC.CE+CE.CE\)

\(\Rightarrow BC^2=BC.BF+BC.CE+CE.BF\) (*)

Xét tg ABC cũng áp dụng định lý đường phân giác có

\(\frac{BF}{AF}=\frac{BC}{AC}\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}\Rightarrow BF=\frac{BC.AB}{BC+AC}\)  (1)

\(\frac{CE}{AE}=\frac{BC}{AB}\Rightarrow\frac{CE}{BC}=\frac{AE}{AB}=\frac{CE+AE}{BC+AB}=\frac{AC}{BC+AB}\Rightarrow CE=\frac{BC.AC}{BC+AB}\) (2)

Thay (1) và (2)  vào (*) ta có

\(BC^2=\frac{BC.BC.AB}{BC+AC}+\frac{BC.BC.AC}{BC+AB}+\frac{BC.AC.BC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)

\(\Rightarrow1=\frac{AB}{BC+AC}+\frac{AC}{BC+AB}+\frac{AC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)

=> (BC+AB)(BC+AC)=AB(BC+AB)+AC(BC+AC)+AB.AC

=> BC2+AC.BC+AB.BC+AB.AC=AB.BC+AB2+AC.BC+AC2+AB.AC => BC2=AB2+AC2

=> tam giác ABC vuông tại A (định lí pitago đảo)