tìm x:
a) \(3^{x+1}=9^x\)
b) \(2^{3x+2}=4^{x+5}\)
c) \(3^{2x-1}=243\)
\(\text{nhanh lên}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x+\frac{1}{x}=t\)thì \(x^2+\frac{1}{x^2}=t^2-2\)
Lúc đó: \(y=f\left(x\right)=t^2-2+2t+8=\left(t^2+2t+1\right)+5=\left(t+1\right)^2+5\ge5\)
Đẳng thức xảy ra khi \(t=x+\frac{1}{x}=-1\Leftrightarrow x^2+x+1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{3}{4}\)\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{\sqrt{3}}{2}i\\x+\frac{1}{2}=-\frac{\sqrt{3}}{2}i\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}i-1}{2}\\x=\frac{-\sqrt{3}i-1}{2}\end{cases}}\)
toán:
số thứ nhất là:
(290+70): 2= 180
số thứ hai là:
(290-70) : 2= 110
Đ/s:.....
1= 4
2=8
3=12
4= 16
x+7 \(⋮\) 2x+3
=> 2x+ 14 \(⋮\) 2x+3
=> (2x+3)+ 11 \(⋮\) 2x+3
=> 11\(⋮\) 2x+3
=> 2x+3 \(\in\) \(Ư\) (11)
=
={±1;±11}
Ta lập bảng sau :
2x+3 -1 1 -11 11
x -2 -1 -7 4
vậy x \(\in\) \(\left\{-2;-1;-7;4\right\}\)
Áp dụng định lý dường phân giác: "Trong tam giác đường phân giác của một góc chia cạnh đối diện thành 2 đoạn thảng tỷ lệ với hai cạnh kề hai đoạn ấy"
Xét tg BCE có
\(\frac{BO}{EO}=\frac{BC}{CE}\Rightarrow\frac{BO}{BC}=\frac{EO}{CE}=\frac{BO+EO}{BC+CE}=\frac{BE}{BC+CE}\Rightarrow\frac{BO}{BE}=\frac{BC}{BC+CE}\)
Xét tg BCF có
\(\frac{CO}{FO}=\frac{BC}{BF}\Rightarrow\frac{CO}{BC}=\frac{FO}{BF}=\frac{CO+FO}{BC+BF}=\frac{CF}{BC+BF}\Rightarrow\frac{CO}{CF}=\frac{BC}{BC+BF}\)
\(\Rightarrow\frac{BO}{BE}.\frac{CO}{CF}=\frac{BC.BC}{\left(BC+CE\right)\left(BC+CF\right)}=\frac{BC^2}{\left(BC+CE\right)\left(BC+BF\right)}=\frac{1}{2}\)
\(\Rightarrow2.BC^2=\left(BC+CE\right)\left(BC+BF\right)=BC^2+BC.BF+BC.CE+CE.CE\)
\(\Rightarrow BC^2=BC.BF+BC.CE+CE.BF\) (*)
Xét tg ABC cũng áp dụng định lý đường phân giác có
\(\frac{BF}{AF}=\frac{BC}{AC}\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}\Rightarrow BF=\frac{BC.AB}{BC+AC}\) (1)
\(\frac{CE}{AE}=\frac{BC}{AB}\Rightarrow\frac{CE}{BC}=\frac{AE}{AB}=\frac{CE+AE}{BC+AB}=\frac{AC}{BC+AB}\Rightarrow CE=\frac{BC.AC}{BC+AB}\) (2)
Thay (1) và (2) vào (*) ta có
\(BC^2=\frac{BC.BC.AB}{BC+AC}+\frac{BC.BC.AC}{BC+AB}+\frac{BC.AC.BC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)
\(\Rightarrow1=\frac{AB}{BC+AC}+\frac{AC}{BC+AB}+\frac{AC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)
=> (BC+AB)(BC+AC)=AB(BC+AB)+AC(BC+AC)+AB.AC
=> BC2+AC.BC+AB.BC+AB.AC=AB.BC+AB2+AC.BC+AC2+AB.AC => BC2=AB2+AC2
=> tam giác ABC vuông tại A (định lí pitago đảo)
a/ \(3^{x+1}=9^x=3^{2x}\Rightarrow x+1=2x\Leftrightarrow x=1\)
b/ \(2^{3x+2}=4^{x+5}=2^{2x+10}\Rightarrow3x+2=2x+10\Leftrightarrow x=8\)
c/ \(3^{2x-1}=243=3^5\Rightarrow2x-1=5\Leftrightarrow x=3\)