Bỏ dấu và rút gọn
D=+5-3x với x >
C=-3x+2 với x > 1
B=-3x+2 với x >
A= +x-5 với x <
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề : A < 90*
a, Chứng minh
\(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\RightarrowĐPCM\)
b, CM được :
\(\widehat{ADE}\)\(=\)\(\widehat{ACB}\)\(=\)\(\frac{180'-\widehat{BAC}}{2}\)
\(\Rightarrow DE//BC\)
c, CM được : \(\widehat{IBC}=\widehat{ICB}\)
\(\RightarrowĐPCM\)
d, Gọi M là giao điểm của AI và BC ,
CM được AI là tia phân giác của góc \(\widehat{BAC}\), từ đó \(\widehat{AMB}\)\(=90'\)
\(\RightarrowĐPCM\)
A D E C M B I
Gọi F là trung điểm của CD
Có FE là đường trung tuyến ứng với cạnh huyền của tam giác vuông CDE
⇒FE=CF=FD=BC=CD/2
⇒ ΔCFE cân
Mà 180 độ−∠BCA=∠FCE
⇒∠FCE=60 độ
⇒ΔCFE đều
=> CF=FE=CE
Xét tam giác BFE và DCE có:
CE=FE
∠FCE=∠CFE=60 độ
BF=CD(BC=CF=FD)
⇒ Δ BFE = Δ DCE (c-g-c)
∠FBE=∠CDE=90 độ−60 độ=30 độ
=> ΔBED cân tại E
⇒BE=ED (1)
Xét Δ ABC có:
∠ABC+∠ACB+∠BAC=180 độ
⇒∠CAB=180 độ −(∠ABC+∠ACB)=180−165=15 độ
Mà ∠EBA+∠FBE=∠CBA=45 độ
⇒∠EBA=45−30=15 độ
⇒ ∠EBA=∠CAB=15 độ
⇒ ΔBEA cân tại E
=> BE=AE (2)
từ (1) và (2) => ED=AE.
=> ΔADE cân tại E
Đồng thời tam giác ADE có ∠DEA=90 độ
⇒ ΔADE là tam giác cân vuông
⇒∠EDA=∠DAE=90/2=45 độ
Mà ∠BDA=∠CDE+∠EDA=30+45=75 độ
chắc là bạn sai đề rồi
tam giác ABC mà góc A = 90 độ thì sao mà kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E được
Giải:
Hình bạn tự vẽ nhé.
Ta có: DE _|_ AB tại E (gt)
DF _|_ AC tại F (gt)
=> Góc CFD = góc BED = góc AFD = góc AED = 90o
Vì D là trung điểm của BC (gt)
nên CD = BD
Xét tam giác CDF và tam giác BDE có:
Góc CFD = góc BED = 90o (chứng minh trên)
CD = BD (chứng minh trên)
Góc C = góc B (gt)
=> Tam giác CDF = tam giác BDE (cạnh huyền - góc nhọn) (đpcm)
b) Ta có: tam giác CDF = tam giác BDE (chứng minh trên)
=> CF = BE (2 cạnh tương ứng)
DF = DE (2 cạnh tương ứng)
Mà AB = AE + BE
AC = AF + CF
Lại có: AB = AC (gt)
=> AE = AF
Xét tam giác ADF và tam giác ADE có:
AF = AE (chứng minh trên)
Góc AFD = góc AED (chứng minh trên)
DF = DE (chứng minh trên)
=> Tam giác ADF = tam giác ADE (c.g.c) (đpcm)
c) Ta có: tam giác ADF = tam giác ADE (chứng minh trên)
=> Góc DAF = góc DAE (2 góc tương ứng)
hay góc CAD = góc BAD
Lại có: AD là tia nằm giữa 2 tia AC, AB
=> AD là tia phân giác của góc BAC (đpcm)
a) Xét tam giác ABC và tam giác DMC , ta có :
CB = CM ( gt )
Góc ACB = góc DCM ( hai góc đối đỉnh )
CA = CD ( gt )
=> Tam giác ABC = tam giác DCM ( c.g.c )
b) Ta có : Tam giác ABC = tam giác DCM ( Theo phần a )
=> Góc ABC = góc DCM ( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong => AB song song MD ( đpcm )
A B C H
Vì \(\Delta ABC\)vuông tại \(A,\)và \(AH\perp BC\)nên:
\(S_{\Delta ABC}=\frac{AB.AC}{2}=\frac{BC.AH}{2}\)
\(\Rightarrow AB.AC=BC.AH\)
Ta có: \(AB.AC=BC.AH\)
\(\Leftrightarrow AB^2.AC^2=BC^2.AH^2\)
\(\Leftrightarrow\frac{AB^2.AC^2}{BC^2}=AH^2\)
mà \(AB^2+AC^2=BC^2\)( Định lí Pi-ta-go )
\(\Leftrightarrow\frac{AB^2+AC^2}{AB^2.AC^2}=\frac{1}{AH^2}\)
\(\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\left(ĐPCM\right)\)
Hình vẽ của mình chỉ mang tính chất minh họa nên các bn bỏ qua một số lỗi vẽ hình của mình nha ^_^
\(\Rightarrow\frac{2016a+b+c+d}{a}-2015=\frac{a+2016b+c+d}{b}-2015=\frac{a+b+2016c+d}{c}-2015=\frac{a+b+c+2016d}{d}-2015\)\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
TH1: nếu \(a,b,c,d\ne0\Rightarrow a=b=c=d\)
khi đó biểu thức đượcA=\(\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}\)
\(\Rightarrow1+1+1+1=4\)
sao em đọc đề mà ko hiểu đề là sao ta
học lớp 7 mà đọc đề lớp 7 mà ko hỉu