Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC. Gọi M là trung điểm của BC, trên tia đối của tia HA lấy điểm E sao cho HA = HE Trên tia đối của MA lấy điểm F sao cho MA = MF. Chứng minh rằng
b) ME=MF
a) BE=BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :
22020 - 22019 = 22019
22019 - 22018 = 22018
22018 - 22017 = 22017
..................
23 - 22 = 22
22 - 2 = 2
2 - 1 = 1
=> P = 1
=> Q = 20201 = 2020


\(2P=2^{2021}+2^{2020}+...+2^3+2^2+2\)
\(P=2P-P=2^{2021}-1\)
\(\Rightarrow Q=2020^{2^{2021}-1}\)
P = 22020 + 22019 + ....+ 22 + 2 +1
=> 2P = 22021 + 22020 + ....+ 23 + 22 + 2
=> 2P-P = (22021 + 22020 + ....+ 23 + 22 + 2 )- ( 22020 + 22019 + ....+ 22 + 2 +1 )
=> P = 22021 + 22020 + ....+ 23 + 22 + 2 - 22020 - 22019 - ...- 22 - 2 - 1
=>P = 22021-1
Ta có :
Q = 2020p
=> \(Q=2020^{2^{2021}-1}\)

Câu 1: Không gian mẫu là số cách lấy được \(2\)viên bi trong \(11\)viên. \(n\left(\Omega\right)=C^2_{11}\)
\(A\)là biến cố lấy được hai viên bi đỏ. \(n\left(A\right)=C^2_5\)
Xác suất cần tìm là: \(\frac{n\left(A\right)}{n\left(\Omega\right)}=\frac{2}{11}\).
Câu 2: Tương tự câu 1.
Xác suất là \(\frac{C^1_{15}.C^2_{85}}{C^3_{100}}=\frac{51}{154}\)

Đặt biểu thức cần tính là A
Đặt B=1+22+32+42+...+1002=1+2(1+1)+3(2+1)+4(3+1)+...+100(99+1)
B=1+1.2+2+2.3+3+3.4+4+...+99.100+100=(1+2+3+4+...+100)+(1.2+2.3+3.4+...+99.100)
Đặt C=1.2+2.3+3.4+...+99.100 => 3.C=1.2.3+2.3.3+3.4.3+...+99.100.3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3.C=1.2.3-1.2.3+2.3.4-2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=99.100.101 => C=33.100.101
Đặt \(D=1+2+3+4+...+100=\frac{100\left(1+100\right)}{2}=5050.\)
=> B=D+C=5050+33.100.101
A=(22+42+62++82+...+1002)-(1+32+52+72+...+992)
Đặt E=22+42+62+82+...+1002=22.(1+22+32+42+...+502)=22.[1+2.(1+1)+3(2+1)+4(3+1)+...+50(49+1)]
E=22.(1+1.2+2+2.3+3+3.4+4+...+49.50+50)=22.[(1+2+3+...+50)+(1.2+2.3+3.4+...+49.50] Tính tương tự như C và D
=> \(E=2^2.\left(\frac{50.\left(1+50\right)}{2}+\frac{49.50.51}{3}\right)=2^2.\left(1275+17.49.50\right)\)
Mặt khác ta có
B=(1+32+52+72+...+992)+(22+42+62+82+...+1002)=(1+32+52+72+...+992)+E => 1+32+52+72+...+992=B-E
=> A=E-(B-E)=2.E-B
\(\Rightarrow A=2^3\left(1275+17.49.50\right)-\left(5050+33.100.101\right)\)