Tìm x, biết:
\(6^{x+1}\)\(:12=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=21+22+23+......+2100
S= (21+22)+(23+24)+......+(299+2100)
S= (2+22)+22.(2+22)+......+22(2+22)
S=6+22.6+......+22.6 chia hết cho
=>S chia hết cho 3
mình chỉ làm đến đây đc thôi,mong bn thông cảm
\(S=2+2^2+2^3+...+2^{100}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3\)
\(=\left(2+2^3+...+2^{99}\right).3⋮3\)
\(S=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^3+2^4\right)\)
\(=2.15+...+2^{97}.15\)
\(=\left(2+...+2^{97}\right).15⋮15\)
Vì S chia hết 15 nên S cũng chia hết cho 30
S chia hết cho 30 nên S cũng chia hết cho 10
=>Chữ số tận cùng của S là 0
mình hoàn thiện nốt bài bạn ở trên nhé
Do \(x^2+xu+u^2\)là một bình phương thiếu nên \(x^2+xu+u^2\ge0\Rightarrow x^2+xu+u^2+2\ge2>0\text{}\)
vậy hệ phương trình ban đầu \(\Leftrightarrow x=u\) hay \(x=\sqrt[3]{2x+1}\Leftrightarrow x^3=2x+1\Leftrightarrow\left(x+1\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)vậy pt có ba nghiệm
a) \(1-2018sin\left(2019x+2020\right)\)
có: \(-1\le sin\left(2019x+2020\right)\le1\)
\(-2018\le2018sin\left(2019x+2020\right)\le2018\)
\(-2017\le1-2018sin\left(2019x+2020\right)\le2019\)
b) \(1+\sqrt{5+4cos3x}\)
có: \(-1\le cos3x\le1\)
\(-4\le4cos3x\le4\)
\(1\le5+4cos3x\le9\)
\(1\le\sqrt{5+4cos3x}\le3\)
\(2\le1+\sqrt{5+4cos3x}\le4\)
c) \(y=\sqrt{3}sin5x-cos5x\)
Đặt \(\sqrt{3}sin5x-cos5x=c\)
Điều kiện có nghiệm của phương trình này là \(c^2\le\left(\sqrt{3}\right)^2+1^2=4\Leftrightarrow-2\le c\le2\)
do đó \(-2\le\sqrt{3}sin5x-cos5x\le2\)
d) \(5+4sin2x.cos2x=5+2sin4x\)
\(-1\le sin4x\le1\)
\(-2\le2sin4x\le2\)
\(3\le5+2sin4x\le7\)
Gọi số học sinh trong lớp đó là \(n\)(bạn) (\(n\inℕ,35\le n\le60\))
Ta có: \(n\)chia cho \(2,3,4,8\)đều dư \(1\)nên \(n-1\)chia hết cho \(2,3,4,8\).
Có \(BCNN\left(2,3,4,8\right)=24\)suy ra \(n-1\in B\left(24\right)=\left\{0;24;48;72;...\right\}\)
mà \(35\le n\le60\)nên \(n-1=48\Leftrightarrow n=49\)
ta có
\(\frac{1300}{1500}=\frac{13}{15}>\frac{9}{15}=\frac{3}{5}=\frac{33}{55}\)
hay \(\frac{1300}{1500}>\frac{334}{55}\Rightarrow\frac{1300}{1500}>\frac{1300+33}{1500+55}>\frac{33}{55}\Rightarrow\frac{1300}{1500}>\frac{1333}{1555}\)
vậy \(\frac{13}{15}>\frac{1333}{1555}\)
ta có
\(\frac{1300}{1500}=\frac{13}{15}>\frac{9}{15}=\frac{3}{5}=\frac{33}{55}\)\(\)
hay ta có :
\(\frac{1300}{1500}>\frac{334}{55}\)
\(\Rightarrow\frac{1300}{1500}>\frac{1300+33}{1500+55}>\frac{33}{55}\)
\(\Rightarrow\frac{1300}{1500}>\frac{1333}{1555}\)
vậy \(\frac{13}{15}>\frac{1333}{1555}\)
\(ĐK:x\inℝ\)
\(\sqrt{5x^2+6x+5}=\frac{64x^3+4x}{5x^2+6x+6}\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}-4=\frac{64x^3+4x}{5x^2+6x+6}-4\)
\(\Leftrightarrow\frac{5x^2+6x-11}{\sqrt{5x^2+6x+5}+4}=\frac{64x^3-20x^2-20x-24}{5x^2+6x+6}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(5x+11\right)}{\sqrt{5x^2+6x+5}+4}=\frac{4\left(x-1\right)\left(16x^2+11x+6\right)}{5x^2+6x+6}\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{5x+11}{\sqrt{5x^2+6x+5}+4}-\frac{64x^2+44x+24}{5x^2+6x+6}\right)=0\)
Suy ra x - 1 = 0 hay x = 1
Vậy phương trình có 1 nghiệm thực duy nhất là 1
moijhsdhwodheufidwaspodjifhifhhhdhisdadpeirfiehfhei'HIEODOIDIOHFDEEF'Ềf;huewhrfeur ruEHR655FREW RTFEWYFYWEYDywjKHHFFHEHFEHDFHE HFJEHF JFHEJHFJEHJEHNDJEHFNC HFJHFJCFJEDSACNASJBJBVGJFHJHFJKHFJKSJDHFJSDHFJK BNDMFJKDHCFJDKCNJDSCASKNMDKFJSGVBFAJBHCFJKSDBV JSDBCFHJKSBCFSA BFHSDBVHJSDGBH BSDHVBHSDSDJHSDBVHJSFV DBHJSDBVJHSD JVDBCFĐ HVDSVHDSVJDHCFDCFBSDGFGFGFGCFCCFCCFGCVGCFGCF TIENG ANH DAY
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow x\left(2x^2+10x-x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\)
\(\Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\)
\(\Leftrightarrow-6x=8\Leftrightarrow x=-\frac{4}{3}\)
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow\left(2x^2-x\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow\left(2x^3+9x^2-5x\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\)
\(\Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\)
\(\Leftrightarrow-6x-4,5=3,5\)
\(\Leftrightarrow-6x=3,5+4,5\)
\(\Leftrightarrow-6x=8\)
\(\Leftrightarrow x=-\frac{8}{6}=-\frac{4}{3}\)
có:
6x+1 = 12:3
6x+1 = 4
x +1 =22
=> x+1 =2
x=2-1
x=1
VAY x=1
6x+1 =3.12
6x+1=36
6x+1=62
=>x+1=2
x=2-1
x=1