a) Tính tổng: S = (-1/7)0 + (-1/7)1 + (-1/7)2 +...+ (-1/7)2007
b) Thực hiện phép tính: M = 1 + 1/2*(1+2) + 1/3*(1+2+3) + 1/4*(1+2+3+4) +...+ 1/16*(1+2+3+...+16)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét Tam giác ABC và Tam giác ECM
có: BM = CM (M là trung điểm của BC)
AMB = EMC ( Đối đỉnh)
AM = EM (M là trung điểm của AE)
=> Tam giác ABC = Tam giác ECM (c. g .c) (đpcm)
b) Vì AB < AC
mà AB = EC
=> EC < AC
=>EAC < AEC (quan hệ giữa góc và cạnh đối diện )
=>MAC < MEC
Mà MAB = MEC (Tam giác ABC = Tam giác ECM)
=>MAC < MAB
a/ Xét ΔABM và ΔECM có:
MB=MC (Mlà trung điểm của BC)
góc AMB = góc EMC ( 2 góc đối đỉnh)
MA=ME(giả thiết)
Do đó ΔABM=ΔECM(c.g.c)
b/ MAC<MAB
a, Đặt \(x=3k;y=5k\)
hay \(A=\frac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=\frac{120}{15}=8\)
b, Ta có : \(x-y-z=0\Rightarrow x-y=z;x-z=y;x=y+z\)
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
hay \(\frac{y+z-z}{x}.\frac{x-z-x}{y}.\frac{x-y+y}{z}=\frac{y\left(-z\right).x}{xyz}=-1\)
1.They are interseting in the film which they found.
2.Despite being old,she works hard.
3.We used to cycle to school two years ago.
4, Although he set off early,he arrived late.
Bai 1 ; Viet lai cau sao cho nghia khong doi
1, They found the film intererting
⇒THEY ARE interested in the film
2 , Although she is old , she works hand
⇒Dispite her old age, she works hard
3 , we ofter cycled to school two years ago
⇒We used to cycle to school two years ago
4 , He set offf early , but he arrived late
⇒Although He set offf early , he arrived late
5 , The distance from ha noi to can tho is about 1 , 887 km
⇒It is bout 1 , 887 km from ha noi to can tho
ta có tam giác AMN cân ở A=> AM=AN( hai cạnh bên) (3)
Xét hai tam giác vuông Tam giác EMB và tam giác FCN có:
Góc EMB=góc FNC (cmt)
MB=CN(cmt)
=> tam giác EMB= tam giác FNC ( cạnh huyền -góc nhọn)
=>EM=FN(hai cạnh tương ứng ) (4)
Ta có (3) (4) mà AE+EM=AM và AF+FN=AN
=> AE=AF
Xét hai tam giác vuông tam giác AEI và tam giác AFI có
AI cạnh chung
AE=AF(cmt)
=> tam giác AEI = Tam giác AFI (cạnh huyền-cạnh góc vuông)
=>Góc AIE=Góc AIF( góc tương ứng ) (10)
ta có góc EBM+MBD=góc EBD= góc ABI (đối đỉnh)(5)
góc FCN+NCE= Góc FCE= góc ACI( đối đỉnh )(6)
mà góc EBM= góc FCN (cmt)(7)
góc MDB=góc NCE(gt) (8)
từ (5)(6)(7)(8)=> góc ABI = góc ACI (9)
từ (9) (10)=> góc BAI=góc CAI ( tổng 3 góc của một tam giác ) (đpcm)\
Đặt
\(A=\frac{1}{2}.\frac{3}{4}...\frac{2017}{2018}.\frac{2019}{2020}\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{2016}{2017}.\frac{2018}{2019}\)
\(C=\frac{2}{3}.\frac{4}{5}...\frac{2018}{2019}.\frac{2020}{2021}\)
Ta có: \(\frac{1}{2}< \frac{2}{3}< \frac{3}{4}< ...< \frac{2018}{2019}< \frac{2019}{2020}< \frac{2020}{2021}\)
\(\Rightarrow B< A< C\)
\(\Leftrightarrow AB< A^2< AC\)
\(\Leftrightarrow\hept{\begin{cases}A^2>\left(\frac{1}{2}.\frac{3}{4}...\frac{2017}{2018}.\frac{2019}{2020}\right)\left(\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{2016}{2017}.\frac{2018}{2019}\right)\\A^2< \left(\frac{1}{2}.\frac{3}{4}...\frac{2017}{2018}.\frac{2019}{2020}\right)\left(\frac{2}{3}.\frac{4}{5}...\frac{2018}{2019}.\frac{2020}{2021}\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}A^2>\frac{1}{2}.\frac{1}{2}.\frac{2}{2020}=\frac{1}{4040}\\A^2< \frac{1}{2021}\end{cases}}\)
Vậy \(\frac{1}{4040}< \left(\frac{1}{2}.\frac{3}{4}...\frac{2017}{2018}.\frac{2019}{2020}\right)^2< \frac{1}{2021}\)
a, Ta có A - B hay \(x^2+xy-y^2+5+x^2+4xy+3y^2+3\)
\(=2x^2+5xy+2y^2+8\)
A + B hay \(x^2+xy-y^2+5-x^2-4xy-3y^2-3\)
\(=-3xy-4y^2+2\)
B - A hay \(-x^2-4xy-3y^2-3-x^2-xy+y^2-5\)
\(=-2x^2-5xy-2y^2-8\)
b, Thay x = 0,5 ; y = -4 vào A + B ta được :
\(-3xy-4y^2+2\Rightarrow-3.0,5.\left(-4\right)-4\left(-4\right)^2+2\)
\(=6-4.16+2=6-64+2=-56\)
Vậy với x =0,5 ; y = -4 thì biểu thức A + B nhận giá trị là -56
a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)
Lấy 7S trừ S ta có :
7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)
6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)