K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

Điều kiện xác định: \(0\le x\le1\)
Nhận ra rằng phương trình có nghiệm \(x=\frac{1}{2}\)khi x = 1-x nên ta sẽ dùng phương pháp đánh giá.
Với mọi a, b ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\).
Suy ra: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2< 2\left(\left(\sqrt{x}\right)^2+\left(\sqrt{1-x}\right)^2\right)=2\)
Vậy \(\sqrt{x}+\sqrt{1-x}\le\sqrt{2}\left(1\right)\)
Với mọi a, b ta luôn có: \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
Thật vậy: \(\left(a+b\right)^4=\left(a+b\right)^2\left(a+b\right)^2\le2\left(a^2+b^2\right).2\left(a^2+b^2\right)=4\left(a^2+b^2\right)^2\)
\(4\left(a^2+b^2\right)^2< 4.2.\left(a^4+b^4\right)=8\left(a^4+b^4\right)\)suy ra: \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
áp dụng BĐT trên cho \(\sqrt[4]{x}+\sqrt[4]{1-x}\)ta có:
\(\left(\sqrt[4]{x}+\sqrt[4]{1-x}\right)^4\le8\left(\left(\sqrt[4]{x}\right)^4+\left(\sqrt[4]{1-x}\right)^4\right)=8\) 
Suy ra:\(\sqrt[4]{x}+\sqrt[4]{1-x}\le\sqrt[4]{8}\left(2\right)\)
từ (1), (2) suy ra: \(\sqrt{x}+\sqrt{1-x}+\sqrt[4]{x}+\sqrt[4]{1-x}\le\sqrt{2}+\sqrt[4]{8}\)
Dấu "=" xảy ra: \(x=1-x\Leftrightarrow x=\frac{1}{2}\)(thoản mãn).

'

20 tháng 7 2016

bài toán:

  √x+√1−x+4√x+4√1−x=√2+4√8

19 tháng 7 2016

Ta có:

\(\frac{1}{\sqrt{1}+\sqrt{2}}>\frac{1}{\sqrt{2}+\sqrt{3}};\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{\sqrt{4}+\sqrt{5}};...;\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{\sqrt{80}+\sqrt{81}}\)

Do đó \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\right)\)\(>\frac{1}{2}\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

\(=\frac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{80}-\sqrt{79}+\sqrt{81}-\sqrt{80}\right)\)

\(=\frac{1}{2}\left(-\sqrt{1}+\sqrt{81}\right)=\frac{1}{2}\left(-1+9\right)=4\)

Suy ra đpcm.

19 tháng 7 2016

Đặt \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{79}}\)
Suy ra 
\(2A=2\left(\frac{1}{\sqrt{2}+\sqrt{1}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\right)\)
\(=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+....+\left(\sqrt{80}-\sqrt{79}\right)+\left(\sqrt{81}-\sqrt{79}\right)\)
\(=\sqrt{81}-1=9-1=8\Rightarrow2A>8\Leftrightarrow A>8\)( Đpcm)

19 tháng 7 2016

- Cái ở dưới có vẻ dễ :)

19 tháng 7 2016

k vao se co cau tra loi

19 tháng 7 2016

bài này mình nghĩ chỉ có thể áp dụng bdt shur la ra .

19 tháng 7 2016

Theo đầu bài ta có:
\(g\left(x\right)=\frac{x+x^2+x^3+...+x^{2014}}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}}:x^{2015}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\left(\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}\right)\cdot x^{2015}}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\frac{x^{2015}}{x}+\frac{x^{2015}}{x^2}+\frac{x^{2015}}{x^3}+...+\frac{x^{2015}}{x^{2014}}}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{x^{2014}+x^{2013}+x^{2012}+...+x}\right]\cdot x^{2015}\)
\(=1\cdot x^{2015}=x^{2015}\)
\(\Rightarrow g\left(2014\right)=2014^{2015}=\left(...14\right)^{10^{201}}\cdot\left(...14\right)^5=\left(...76\right)\cdot\left(...24\right)=\left(...24\right)\)
Vậy chữ số hàng đơn vị của g ( 2014 ) là 4. còn chữ số hàng chục của g ( 2014 ) là 2.

19 tháng 7 2016

minh ko biet

19 tháng 7 2016

k vao se co cau tra loi

19 tháng 7 2016

kick vao se co cau tra loi

19 tháng 7 2016

Ta sẽ chứng minh với \(n\ge1\)thì \(P_n=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2n-1\right)^2}\right)=\frac{-2n-1}{2n-1}\)

Với \(n=1\)mệnh đề đúng vì \(1-4=-3=\frac{-2.1-1}{2.1-1}\)

Giả sử mệnh đề đúng với \(n=k\)tức là \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k-1\right)^2}\right)=\frac{-2k-1}{2k-1}\)

Ta sẽ chứng minh mệnh đề đúng với \(n=k+1\)tức là chứng minh \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k+1\right)^2}\right)=\frac{-\left(2k+3\right)}{2k+1}\)

Thật vậy \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k-1\right)^2}\right)\left(1-\frac{4}{\left(2k+1\right)^2}\right)=\frac{-2k-1}{2k-1}.\frac{\left(2k-1\right)\left(2k+3\right)}{\left(2k+1\right)^2}\)

\(=\frac{-\left(2k+1\right)}{2k-1}.\frac{\left(2k-1\right)\left(2k+3\right)}{\left(2k+1\right)^2}=\frac{-\left(2k+3\right)}{2k+1}.\)

Theo nguyên lý quy nạp, mệnh đề đúng với mọi \(n\ge1\)

18 tháng 7 2016

Đặt a=x2+x+2>0, phương trình trên trở thành:

\(\sqrt{a+5}+\sqrt{a}=\sqrt{3a+13}\)

\(\Rightarrow2a+5+2\sqrt{a^2+5a}=3a+13\)

\(\Leftrightarrow2\sqrt{a^2+5a}=a+8\)

\(\Leftrightarrow4a^2+20a=a^2+16a+64\)

\(\Leftrightarrow3a^2+4a-64=0\)

\(\Delta=784>0\Rightarrow\sqrt{\Delta}=28\)

=>PT có 2 nghiệm phân biệt: \(a_1=4\)(nhận);\(a_2=-\frac{16}{3}\)(loại)

Do đó : \(x^2+x+2=4\Leftrightarrow x^2+x-2=0\)

Ta có : a+b+c=1+1-2=0 

=>phương trình có 2 nghiệm pb: \(x_1=1;x_2=-2\)

Vậy tập nghiệm của PT là: S={1;-2}

18 tháng 7 2016

mình ko bjt, mình mới hok lớp 7

18 tháng 7 2016

ĐK: \(4x^2+5x+1\ge0\Leftrightarrow\left(4x+1\right)\left(x+1\right)\ge0\)

<=>\(\orbr{\begin{cases}x\le-1\\x\ge\frac{-1}{4}\end{cases}}\)

PT trên tương đương: \(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)

Đặt \(a=\sqrt{4x^2+5x+1}\ge0;b=\sqrt{4x^2-4x+4}>0\) ta có hệ PT:

\(\hept{\begin{cases}a-b=9x-3\\a^2-b^2=9x-3\end{cases}}\Leftrightarrow a-b=a^2-b^2\)

<=>a-b=(a-b)(a+b)

<=>(a-b)(1-a-b)=0

<=>a=b hoặc 1-a-b=0

*Khi a=b  thì: \(\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\Leftrightarrow9x-3=0\)

<=>x=1/3(nhận)

*Khi 1-a-b=0 =>a+b=1 

=>\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\)(vô lí vì: \(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\ge\sqrt{3}>1\))

Vậy tập nghiệm của PT là: S={1/3}

18 tháng 7 2016

kho nhi

18 tháng 7 2016

đặt \(\sqrt{x-\sqrt{x^2-1}}=a\) và \(\sqrt{x+\sqrt{x^2-1}}=b\)

ta có hệ pt \(\hept{\begin{cases}ab=1\\\sqrt{a}+b=2\end{cases}}\)

đến đây cậu giải nốt nha

18 tháng 7 2016

to khong biet