K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

đặt \(\sqrt{x^2-x+1}=a\)

và \(\sqrt{x-2}=b\)

==> \(x^2-6x+11=a^2-5b^2\)

và \(x^2-4x+7=a^2-3b^2\)

khi đó pt trên trở thành  \(a\left(a^2-5b^2\right)=2b\left(a^2-3b^2\right)\)

         <=>\(a^3-5ab^2=2a^2b-6ab^2\)

<=> \(a^3-5ab^2+4a^2b-6a^2b+6b^3=0\)

<=> \(a\left(a^2+4ab-5b^2\right)-6b\left(a^2-b^2\right)=0\)

<=>\(a\left(a-b\right)\left(a+5b\right)-6b\left(a-b\right)\left(a+b\right)=0\)

<=> \(\left(a-b\right)\left(a^2+5ab-6ab-6b^2\right)=0\)

<=> \(\left(a-b\right)\left(a^2-ab-6b^2\right)=0\)

<=> \(\orbr{\begin{cases}a=b\\a^2-ab-6b^2=0\end{cases}}\)

đến đây bạn tự giải nốt nhé  

<=> 

26 tháng 7 2016

\(x=5\pm\sqrt{6}\) đúng ko nhỉ

25 tháng 7 2016

\(2< \sqrt{6}< 3.\)

\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6}}< \sqrt{6+3}=3\)

\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6+\sqrt{6}}}< \sqrt{6+3}=3\)

...

\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+3}=3\)

Vậy phần nguyên của \(A=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\)là 2

26 tháng 7 2016

Ta co : \(\sqrt{6}\)\(\sqrt{4}\)= 2

           \(\sqrt{6}\)<\(\sqrt{9}\)= 3

=> \(\sqrt{6+\sqrt{6}}\)<\(\sqrt{9}\)=3

=> \(\sqrt{6+\sqrt{6+\sqrt{6+...}}}\)<\(\sqrt{36}\)= 6

=> 2 < A < 3

=> phan nguyen cua A la 2

26 tháng 7 2016

đặt \(\sqrt{x^2+2016}=y\left(y\ge0\right)\) =>\(2016=y^2-x^2\)

khi đó pt trên trở thành 

\(x^4+y=y^2-x^2\)

<=> \(\left(x^4-y^2\right)+\left(x^2+y\right)=0\)

<=>\(\left(x^2+y\right)\left(x^2-y\right)+\left(x^2+y\right)=0\)

<=>\(\left(x^2+y\right)\left(x^2-y+1\right)=0\)

<=>\(\orbr{\begin{cases}x^2+y=0\left(loai\right)\\x^2=y-1\end{cases}}\)

với x^2=y-1 thì ta có pt \(x^2=\sqrt{x^2+2016}-1\)

<=>\(\left(\sqrt{x^2+2016}+\frac{1}{2}\right)^2=\frac{8061}{4}\)

đến đây bạn tự giải nốt nha 

25 tháng 7 2016

thêm bớt \(x^2+\frac{1}{4}\)

25 tháng 7 2016

 \(\sqrt{1-xy}=\frac{\sqrt{1-xy}.x^2y^2}{x^2y^2}\)\(=\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}\)
có: \(x^5+y^5=2x^2y^2\Rightarrow x^2y^2=\frac{x^5+y^5}{2}\)
\(\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(\frac{x^5+y^5}{2}\right)^2-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(x^5-y^5\right)^2}}{2x^2y^2}=\frac{\left|x^5-y^5\right|}{2x^2y^2}\)
Do x, y hữu tỉ nên \(\frac{\left|x^5-y^5\right|}{2x^2y^2}\)hữu tỉ (đpcm)

25 tháng 7 2016

xy=0 tm
xy khác 0
\(\frac{x^5+y^5}{2x^2y^2}=1\Leftrightarrow\frac{x^3}{2y^2}+\frac{y^3}{2x^2}=1\Leftrightarrow\frac{x^6}{4y^4}+\frac{xy}{2}+\frac{x^6}{4x^4}=1\)
\(\Leftrightarrow\left(\frac{x^3}{2y^2}-\frac{y^3}{2x^2}\right)=1-xy\)=>dpcm
 

25 tháng 7 2016

hiểu chưa 

25 tháng 7 2016

hieu chet lien

25 tháng 7 2016

Đề đúng : Cho \(a=xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) , \(b=x\sqrt{1+y^2}+y\sqrt{1+x^2}\). Hãy tính b theo a, biết x,y> 0

Giải : 

Ta có : \(a^2=\left(xy\right)^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=x^2+y^2+2x^2y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a^2-1\)

Vậy \(b=\sqrt{a^2-1}\)(vì x,y> 0 nên b > 0)

25 tháng 7 2016

khó quá đi em mới học lớp 6 thôi hu hu 

<img class="irc_mi i5I_Ps3Xg92k-pQOPx8XEepE" alt="" style="margin-top: 100px;" src="http://dungfacebook.net/wp-content/uploads/2015/11/622.jpg" width="304" height="196">

24 tháng 7 2016

(x+1)(x-2)(x+6)(x-3)=45x2

<=>(x+1)(x+6)(x-2)(x-3)=45x2

<=>(x2+7x+6)(x2-5x+6)=45x2

Đặt t=x2+7x+6 ta được:

t.(t-12x)=45x2

<=>t2-12xt=45x2

<=>45x2+12xt-t2=0

<=>45x2-3xt+15xt-t2=0

<=>3x.(15x-t)+t.(15x-t)=0

<=>(3x+t)(15x-t)=0

<=>3x=-t hoặc 15x=t

Với 3x=-t =>3x=-x2-7x-6

=>x2+10x+6=0

=>\(x_1=-5+\sqrt{19};x_2=-5-\sqrt{19}\) (loại cả 2 nghiệm) (bài này dài vs lại lớp 9 nên làm tắt chắc cũng dc)

Với 15x=t

=>15x=x2+7x+6

=>x2-8x+6=0

=>\(x_1=4-\sqrt{10};x_2=4+\sqrt{10}\)(loại cả 2 nghiệm)

Vậy PT ko có nghiệm nguyên nào

24 tháng 7 2016

Vì P(x) là đa thức bậc 4 và có 4 nghiệm x1 , x2 , x3 , x4 nên P(x) có thể viết thành : \(P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)

Xét :  \(Q\left(x\right)=x^2-4=\left(x-2\right)\left(x+2\right)=\left(2-x\right)\left(-2-x\right)\)

Ta có \(Q\left(x_1\right)=\left(2-x_1\right)\left(-2-x_1\right)\)\(Q\left(x_2\right)=\left(2-x_2\right)\left(-2-x_2\right)\)

\(Q\left(x_3\right)=\left(2-x_3\right)\left(-2-x_3\right)\) ; \(Q\left(x_4\right)=\left(2-x_4\right)\left(-2-x_4\right)\)

Suy ra : \(T=Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right)\)

\(=\left[\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\right].\left[\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\right]\)

\(=P\left(2\right).P\left(-2\right)=-5.3=-15\)

Vậy T = -15

24 tháng 7 2016

\(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\frac{\sqrt{2}.\left(2+\sqrt{3}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}.\left(2-\sqrt{3}\right)}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\frac{\sqrt{2}.\left(2+\sqrt{3}\right)}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}.\left(2-\sqrt{3}\right)}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\frac{\sqrt{2}.\left(2+\sqrt{3}\right)}{2+\sqrt{3}+1}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{3}+1}\)

\(=\sqrt{2}-\frac{\sqrt{2}}{3+\sqrt{3}}+\sqrt{2}-\frac{\sqrt{2}}{3-\sqrt{3}}\)

\(=2\sqrt{2}-\left(\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}\right)\)

\(=2\sqrt{2}-\frac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}\)

\(=2\sqrt{2}-\frac{6\sqrt{2}}{6}=2\sqrt{2}-\sqrt{2}=\sqrt{2}\)