\(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2< \sqrt{6}< 3.\)
\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6}}< \sqrt{6+3}=3\)
\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6+\sqrt{6}}}< \sqrt{6+3}=3\)
...
\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+3}=3\)
Vậy phần nguyên của \(A=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\)là 2
Ta co : \(\sqrt{6}\)> \(\sqrt{4}\)= 2
\(\sqrt{6}\)<\(\sqrt{9}\)= 3
=> \(\sqrt{6+\sqrt{6}}\)<\(\sqrt{9}\)=3
=> \(\sqrt{6+\sqrt{6+\sqrt{6+...}}}\)<\(\sqrt{36}\)= 6
=> 2 < A < 3
=> phan nguyen cua A la 2
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt \(\sqrt{x^2+2016}=y\left(y\ge0\right)\) =>\(2016=y^2-x^2\)
khi đó pt trên trở thành
\(x^4+y=y^2-x^2\)
<=> \(\left(x^4-y^2\right)+\left(x^2+y\right)=0\)
<=>\(\left(x^2+y\right)\left(x^2-y\right)+\left(x^2+y\right)=0\)
<=>\(\left(x^2+y\right)\left(x^2-y+1\right)=0\)
<=>\(\orbr{\begin{cases}x^2+y=0\left(loai\right)\\x^2=y-1\end{cases}}\)
với x^2=y-1 thì ta có pt \(x^2=\sqrt{x^2+2016}-1\)
<=>\(\left(\sqrt{x^2+2016}+\frac{1}{2}\right)^2=\frac{8061}{4}\)
đến đây bạn tự giải nốt nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{1-xy}=\frac{\sqrt{1-xy}.x^2y^2}{x^2y^2}\)\(=\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}\)
có: \(x^5+y^5=2x^2y^2\Rightarrow x^2y^2=\frac{x^5+y^5}{2}\)
\(\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(\frac{x^5+y^5}{2}\right)^2-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(x^5-y^5\right)^2}}{2x^2y^2}=\frac{\left|x^5-y^5\right|}{2x^2y^2}\)
Do x, y hữu tỉ nên \(\frac{\left|x^5-y^5\right|}{2x^2y^2}\)hữu tỉ (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề đúng : Cho \(a=xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) , \(b=x\sqrt{1+y^2}+y\sqrt{1+x^2}\). Hãy tính b theo a, biết x,y> 0
Giải :
Ta có : \(a^2=\left(xy\right)^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a^2-1\)
Vậy \(b=\sqrt{a^2-1}\)(vì x,y> 0 nên b > 0)
khó quá đi em mới học lớp 6 thôi hu hu
<img class="irc_mi i5I_Ps3Xg92k-pQOPx8XEepE" alt="" style="margin-top: 100px;" src="http://dungfacebook.net/wp-content/uploads/2015/11/622.jpg" width="304" height="196">
![](https://rs.olm.vn/images/avt/0.png?1311)
(x+1)(x-2)(x+6)(x-3)=45x2
<=>(x+1)(x+6)(x-2)(x-3)=45x2
<=>(x2+7x+6)(x2-5x+6)=45x2
Đặt t=x2+7x+6 ta được:
t.(t-12x)=45x2
<=>t2-12xt=45x2
<=>45x2+12xt-t2=0
<=>45x2-3xt+15xt-t2=0
<=>3x.(15x-t)+t.(15x-t)=0
<=>(3x+t)(15x-t)=0
<=>3x=-t hoặc 15x=t
Với 3x=-t =>3x=-x2-7x-6
=>x2+10x+6=0
=>\(x_1=-5+\sqrt{19};x_2=-5-\sqrt{19}\) (loại cả 2 nghiệm) (bài này dài vs lại lớp 9 nên làm tắt chắc cũng dc)
Với 15x=t
=>15x=x2+7x+6
=>x2-8x+6=0
=>\(x_1=4-\sqrt{10};x_2=4+\sqrt{10}\)(loại cả 2 nghiệm)
Vậy PT ko có nghiệm nguyên nào
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì P(x) là đa thức bậc 4 và có 4 nghiệm x1 , x2 , x3 , x4 nên P(x) có thể viết thành : \(P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)
Xét : \(Q\left(x\right)=x^2-4=\left(x-2\right)\left(x+2\right)=\left(2-x\right)\left(-2-x\right)\)
Ta có \(Q\left(x_1\right)=\left(2-x_1\right)\left(-2-x_1\right)\); \(Q\left(x_2\right)=\left(2-x_2\right)\left(-2-x_2\right)\);
\(Q\left(x_3\right)=\left(2-x_3\right)\left(-2-x_3\right)\) ; \(Q\left(x_4\right)=\left(2-x_4\right)\left(-2-x_4\right)\)
Suy ra : \(T=Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right)\)
\(=\left[\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\right].\left[\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\right]\)
\(=P\left(2\right).P\left(-2\right)=-5.3=-15\)
Vậy T = -15
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\frac{\sqrt{2}.\left(2+\sqrt{3}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}.\left(2-\sqrt{3}\right)}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{\sqrt{2}.\left(2+\sqrt{3}\right)}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}.\left(2-\sqrt{3}\right)}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{\sqrt{2}.\left(2+\sqrt{3}\right)}{2+\sqrt{3}+1}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{3}+1}\)
\(=\sqrt{2}-\frac{\sqrt{2}}{3+\sqrt{3}}+\sqrt{2}-\frac{\sqrt{2}}{3-\sqrt{3}}\)
\(=2\sqrt{2}-\left(\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}\right)\)
\(=2\sqrt{2}-\frac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}\)
\(=2\sqrt{2}-\frac{6\sqrt{2}}{6}=2\sqrt{2}-\sqrt{2}=\sqrt{2}\)
đặt \(\sqrt{x^2-x+1}=a\)
và \(\sqrt{x-2}=b\)
==> \(x^2-6x+11=a^2-5b^2\)
và \(x^2-4x+7=a^2-3b^2\)
khi đó pt trên trở thành \(a\left(a^2-5b^2\right)=2b\left(a^2-3b^2\right)\)
<=>\(a^3-5ab^2=2a^2b-6ab^2\)
<=> \(a^3-5ab^2+4a^2b-6a^2b+6b^3=0\)
<=> \(a\left(a^2+4ab-5b^2\right)-6b\left(a^2-b^2\right)=0\)
<=>\(a\left(a-b\right)\left(a+5b\right)-6b\left(a-b\right)\left(a+b\right)=0\)
<=> \(\left(a-b\right)\left(a^2+5ab-6ab-6b^2\right)=0\)
<=> \(\left(a-b\right)\left(a^2-ab-6b^2\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\a^2-ab-6b^2=0\end{cases}}\)
đến đây bạn tự giải nốt nhé
<=>
\(x=5\pm\sqrt{6}\) đúng ko nhỉ