K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

a=b=0

a = b = 0

7 tháng 8 2016

Giả sử trong 2016 số hạng không có số nào bằng nhau.Không mất tính tổng quát ta giả sử:

\(a_1< a_2< a_3< ...........< a_{2016}\)

Vì \(a_1,a_2,......,a_{2016}\) đều là số nguyên dương nên ta suy ra:

\(a_1\ge1,a_2\ge2,.........,a_{2016}\ge2016\)

Suy ra:\(\frac{1}{a_1}+\frac{1}{a_2}+.........+\frac{1}{a_{2016}}< 1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+.....+\left(\frac{1}{1024}+...+\frac{1}{2016}\right)\)

\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+.........+\frac{1}{2^{10}}.2^{10}=11< 12\)

Do đó điều giả sử là sai

Vậy trong 2016 số đã cho có ít nhất hai số bằng nhau

7 tháng 8 2016

éo bik 

7 tháng 8 2016

Chứng minh bằng phản chứng.

Giả sử c không phải cạnh nhỏ nhất, hay c lớn hơn hoặc bằng ít nhất một trong hai cạnh còn lại.

Giả sử cạnh đó là b. Ta có: \(b\le c\)

\(\Rightarrow a^2\ge5c^2-b^2\ge5c^2-c^2=4c^2\)

\(\Rightarrow a\ge2c\)

\(\Rightarrow b+c\le c+c=2c\le a\)

\(b+c\le a\) là một điều trái với bất đẳng thức tam giác \(b+c>a\)

Vậy điều giả sử sai.

Hay c là độ dài cạnh bé nhất,

7 tháng 8 2016

ok tớ camon =))

7 tháng 8 2016

B nguyên tố khác 3 nên b=3k+1 hoặc b=3k+2

B=3k+1 thì A =3n+6027k+2010 chia hét cho 3

B=3k+2 thì A=

6 tháng 8 2016

Xét biểu thức phụ : \(\frac{1}{\left(2n+3\right)\sqrt{2n+1}+\left(2n+1\right)\sqrt{2n+3}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)

\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}\)

\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{2\sqrt{2n+1}.\sqrt{2n+3}}=\frac{1}{2}\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\ge1\)

Áp dụng : \(S=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)

\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{103}}\right)\)

7 tháng 8 2016

DM CHƯA HỌC ĐẾN

\(4x^2+4y^2=12x+4xy\)

\(\left(2y-x\right)^2=3x\left(4-x\right)\ge0\)

=>\(0\le x\le4\)

x01234
y0-1;2//0;32
      
      
8 tháng 10 2019

Câu hỏi của Lan Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath

4 tháng 8 2016

minh biet lam cau b)

A B C D N M

ke phan giac AD  , BM vuong goc AD , CN vuong goc AD

sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)

ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)

=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)

dau = xay ra  <=> AD vuong goc BC  => AD la duong phan giac ,la  duong cao  => tam giac ABC can tai  A => AB=AC => b=c

tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)

=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)

ap dung cosi cjo 2 so duong   b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)

=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)

\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)

dau = xay ra <=> a=b=c hay tam giac ABC deu

5 tháng 8 2016

nhìn bài toán kho hiểu nhỉ ???

5 tháng 8 2016

A B C A1 B1 C1 H x y z

Đặt AA1 = a , BB1 = b , CC1 = c , HA1 = x , HB1 = y , HC1 = z (với a,b,c,x,y,z > 0)

a) Đầu tiên , ta cần chứng minh : \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) .

Thật vậy : \(\frac{x}{a}=\frac{x.BC}{a.BC}=\frac{S_{HBC}}{S_{ABC}}\)\(\frac{y}{b}=\frac{y.AC}{b.AC}=\frac{S_{AHC}}{S_{ABC}}\)\(\frac{z}{c}=\frac{z.AB}{c.AB}=\frac{S_{ABH}}{S_{ABC}}\)

\(\Rightarrow\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=\frac{S_{HBC}+S_{HAC}+S_{HAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Ta có : \(\frac{AA_1}{HA_1}+\frac{BB_1}{HB_1}+\frac{CC_1}{HC_1}=\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right).1=\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right).\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)\)

\(\ge\left(1+1+1\right)^2=9\)(áp dụng bđt Bunhiacopxki)

Vậy ta có đpcm

b) Ta có : \(\frac{HA_1}{HA}+\frac{HB_1}{HB}+\frac{HC_1}{HC}=\frac{x}{a-x}+\frac{y}{b-y}+\frac{z}{c-z}=\frac{1}{\frac{a}{x}-1}+\frac{1}{\frac{b}{y}-1}+\frac{1}{\frac{c}{z}-1}\)

Áp dụng bđt \(\frac{m^2}{i}+\frac{n^2}{j}+\frac{p^2}{k}\ge\frac{\left(m+n+p\right)^2}{i+j+k}\)(bạn tự chứng minh)

Ta có : \(\frac{1^2}{\frac{a}{x}-1}+\frac{1^2}{\frac{b}{y}-1}+\frac{1^2}{\frac{c}{z}-1}\ge\frac{\left(1+1+1\right)^2}{\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)-3}\ge\frac{9}{9-3}=\frac{3}{2}\)

(Từ câu a. ta có \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge9\))

Vậy ta có đpcm

5 tháng 8 2016

Đúng hay sai:

\(\frac{\sqrt{a^2+b^2}}{\sqrt{59+2}}=\frac{\sqrt{89^{x3+8}}}{\sqrt[46]{78+1}}\)

x O          v" O

4 tháng 8 2016

đặt AB=c, BC=a, AC=c.
để chứng minh bđt trên ta sẽ áp dụng công thức: \(S_{\Delta ABC}=\frac{1}{2}.a.b.sinC=\frac{1}{2}.b.c.sinA=\frac{1}{2}.a.c.sinB\)
ta có: \(\frac{sinA}{sinB+sinC}+\frac{sinB}{sinA+sinC}+\frac{sinC}{sinA+sinB}\)
       \(=\frac{a.b.c.sinA}{a.b.c.sinB+a.b.c.sinC}+\frac{a.b.c.sinB}{a.b.c.sinA+a.b.c.sinC}+\frac{a.b.c.sinC}{a.b.c.sinA+a.b.c.sinB}\)
        ;\(=\frac{2S_{\Delta ABC}.a}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.c}+\frac{2S_{\Delta ABC}.b}{2.S_{\Delta ABC}.c+2.S_{\Delta ABC}.b}+\frac{2S_{\Delta ABC}.c}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.a}\)
         \(=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\).
Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{a+c}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
nên \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1.\)
Ta sẽ chứng minh bđt phụ: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\left(1\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow a^2< a\left(b+c\right)\Leftrightarrow a< b+c\)(đúng vì a,b,c là độ dài 3 cạnh của tam giác).
tương tự: \(\frac{b}{a+c}< \frac{2b}{a+b+c};\frac{c}{a+b}< \frac{2c}{a+b+c}\).
suy ra: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\).
vậy bất đẳng thức đã được chứng minh.
 

4 tháng 8 2016

câu này khó ghê