K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

Đkxđ: \(y\ge-1.\)
Phương trình tương đương với: \(x^2-y^2=\sqrt{y+1}\Leftrightarrow\left(\left|x\right|-y\right)\left(\left|x\right|+y\right)=\sqrt{y+1}\)
                                                                                      \(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)^2=y+1\)
TH1: \(y\ge0.\)
Nếu  |x| khác y,: Dễ dàng nhận thấy \(\hept{\begin{cases}\left(\left|x\right|+y\right)^2\ge y+1\\\left(\left|x\right|-y\right)^2\ge1\end{cases}}\)
Để dấu bằng xảy ra thì: \(\hept{\begin{cases}\left(\left|x\right|+y\right)^2=y+1\\\left(\left|x\right|-y\right)^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left|x\right|=1\\y=0\end{cases}}}\)
Vậy x = 1 hoặc x = -1, y = 0.
-  Nếu |x| = y, ta có phương trình: \(x^2=x^2+\sqrt{y+1}\Leftrightarrow y=-1\). ( loại).
TH2: y = -1 Thay vào phương trình ta tính được x = 1 hoặc  x = -1.
Vậy phương trình có cặp nghiệm nguyên là: (x,y) = (-1,1); (1, 1); (1;0); (-1,0)

16 tháng 8 2016

pt đã cho \(\Leftrightarrow\sqrt{3}-x=x^2\left(\sqrt{3}+x\right)\Leftrightarrow x^3+x^2\sqrt{3}+x-\sqrt{3}=0\)
\(\Leftrightarrow x^3+\frac{3.\sqrt{3}}{3}.x^2+3.\left(\frac{\sqrt{3}}{3}\right)x+\frac{\sqrt{3}}{9}=\frac{10\sqrt{3}}{9}\)
\(\Leftrightarrow\left(x+\frac{\sqrt{3}}{3}\right)^3=\frac{10\sqrt{3}}{9}\Rightarrow x+\frac{\sqrt{3}}{3}=\sqrt[3]{\frac{10\sqrt{3}}{9}}\Rightarrow x=\sqrt[3]{\frac{10\sqrt{3}}{9}}-\frac{\sqrt{3}}{3}\)

12 tháng 9 2016

sao lại = 10 căn 3 /3 hả bạn , giảng cho mik

19 tháng 8 2016

Áp dụng bđt cô si với 2 số dương 4x và 1/4x ta có: 4x+1/4x  ≥  2(1)

Đặt (4√x +3)/ (x+1) =B ; √x =t => x=t^2

ta có  : B(t^2 +1) = 4t+3

<=>Bt^2 -4t+B-3=0

Xét delta =b^2 -4ac = 16-4B(B-3)= -4B^2 +12B+16  ≥  0(*) (Để phương trình có gtnn thì pt phải có nghiệm nên delta  ≥  0)

Từ (*) => B^2 -3B-4  ≤ 0

<=> (B-4)(B+1) ≤ 0
=> -1 ≤ B ≤ 4

=>-B ≥ -4(2)

TỪ (1) và (2) => A  ≥ 2+(-4)+2016=2014

Dấu = xảy ra <=> 4x=1/4x và B=4 (tự giải tìm x , ta sẽ được x = 1/4)

3 tháng 5 2018

Xét \(B=\frac{x+1}{4\sqrt{x}+3}\Leftrightarrow16B=\frac{16x+16}{4\sqrt{x}+3}.\)\(=\frac{\left(4\sqrt{x}+3\right)\left(4\sqrt{x}-3\right)+25}{4\sqrt{x}+3}\)

\(=4\sqrt{x}-3+\frac{25}{4\sqrt{x}+3}=4\sqrt{x}+3+\frac{25}{4\sqrt{x}+3}-6\)

Áp dụng BĐT Cauchy

\(16B\ge2\sqrt{25}-6=4\Leftrightarrow B\ge\frac{1}{4}\)

\(\Rightarrow-\frac{4\sqrt{x}+3}{x+1}\ge-4\)

Áp dụng bđt Cauchy

\(\Rightarrow A\ge2\sqrt{\frac{4x.1}{4x}}-4+2016=2014\)

Vậy Min A=2014 khi x=1/4

16 tháng 8 2016

 Ta đặt \(x=\sqrt[3]{2-\sqrt{b}};y=\sqrt[3]{2+\sqrt{b}}\Rightarrow x^3+y^3=4.\)
\(x^2=\sqrt[3]{4-4\sqrt{b}+b}=\sqrt[3]{\left(2-\sqrt{b}\right)^2},y^2=\sqrt[3]{4+4\sqrt{b}+b}=\sqrt[3]{\left(2+\sqrt{b}\right)^2}\).
\(\sqrt[3]{4-b}=\sqrt[3]{\left(2-\sqrt{b}\right)\left(2+\sqrt{b}\right)}=xy\).
Ta có: \(\frac{4}{a}+xy=x^2+y^2\Leftrightarrow\frac{4}{a}=x^2+y^2-xy.\)
          \(\Leftrightarrow4=a\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\).
Suy ra: x + y = a. Vậy x + y là ước của 4 và x + y nguyên dương.
Từ đó ta suy ra: x + y = 1; 2; 4. Kết hợp với điều kiện \(x^3+y^3=4,x\le y.\), Ta sẽ có 3 hệ, các bạn tìm x, y rồi tìm a, b.

25 tháng 8 2022

sao lại suy ra x+y là ước của 4 hả bạn

 

17 tháng 8 2016

Xét biểu thức \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{2}{n}-\frac{2}{n+1}-\frac{2}{n\left(n+1\right)}+\frac{1}{\left(n+1\right)^2}}\)

\(=\sqrt{\left(1+\frac{1}{n}\right)^2-2\left(1+\frac{1}{n}\right)\frac{1}{n+1}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng với n = 2, 3, 4, ..., 2016 ta có:

\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+1+\frac{1}{4}-\frac{1}{5}+...+1+\frac{1}{2016}-\frac{1}{2017}\)

\(=2015+\frac{1}{2}-\frac{1}{2017}\)

22 tháng 8 2016

CON GÀ

15 tháng 8 2016

45 C B A D M N O 45 O X a b x

Từ D, kẻ DM, DN vuông góc CA và CB.

Khi đo ta dễ thấy DMCN là hình vuông. Vậy thì đặt DM = MC = CN = ND = x.

Áp dụng định lý Talet ta có:

 \(\frac{DM}{BC}=\frac{MA}{AC}\Rightarrow\frac{x}{a}=\frac{b-x}{b}\Rightarrow xb=ab-xa\Rightarrow x\left(a+b\right)=ab\)

\(\Rightarrow x=\frac{ab}{a+b}\).

Lại có \(CD=x\sqrt{2}=\frac{ab}{\left(a+b\right)sin45^o}.\)

Cô nghĩ như thế này mới đúng.

14 tháng 8 2016

C B A E D

Ta có : CDEB có góc CEB = góc BDC = 900

=> CDEB là tứ giác nội tiếp => góc AED = góc BCA (góc ngoài tứ giác nội tiếp)

Xét tam giác AED và tam giác ACB có góc A chung, góc AED = góc BCA

=> Tam giác AED đồng dạng với tam giác ACB (g.g)

=> \(\frac{S_{AED}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=cos^2A\)

\(\Rightarrow S_{ADE}=cos^2A\times S_{ABC}\)

Lại có : \(S_{BCDE}+S_{ADE}=S_{ABC}\Rightarrow S_{BCDE}=S_{ABC}-S_{ADE}\)

\(=S_{ABC}-cos^2A\times S_{ABC}\)

\(=S_{ABC}\left(1-cos^2A\right)=sin^2A\times S_{ABC}\)(vì \(sin^2A+cos^2A=1\))

14 tháng 8 2016

Dễ dàng chứng minh \(\Delta ADE\approx\Delta ABC\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)\(\Rightarrow AD.AE=\frac{AB}{AC}.AE^2\Leftrightarrow\frac{1}{2}.AD.AE.\sin EAD=\frac{1}{2}.AB.AC.\cos^2EAD.\sin EAD\)
\(\Rightarrow S_{AED}=S_{ABC}.\cos EAD\)
\(S_{BDEC}=S_{ABC}-S_{AED}=S_{ABC}-S_{ABC}.\cos^2EAD=S_{ABC}\left(1-\cos^2EAD\right)=S_{ABC}.\sin^2EAD\)

14 tháng 8 2016

Điều kiện x>=-2; y>=0; x>=y-3

Ta xét PT thứ nhất 

Đặt √(x+2) = a; √y = b (a,b>=0)

Thì PT thành a(a- b+ 1) - b = 0

<=> a- ab+ a - b = 0

<=> a(a - b)(a + b) + (a -b) =0

<=> (a - b)(a2 + ab + 1)=0

Đễ thấy a2 + ab + 1 >0

Nên a =b 

Thế vào ta được y = x + 2

Thay cái này vào PT còn lại là xong

14 tháng 8 2016

\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\left(1\right)\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\left(2\right)\end{cases}}\)
DKXD :x>=-2; y>=0
Đặt\(\hept{\begin{cases}\sqrt{x+2=a}\\x-y+3=b\end{cases}\left(a\ge0\right)}\)
Pt 1 có dạng \(ab=\sqrt{a^2-b+1}\Leftrightarrow a^2b^2=a^2-b+1\Leftrightarrow a^2\left(b-1\right)\left(b+1\right)+b-1=0\)
\(\Leftrightarrow\left(b-1\right)\left(a^2b+a^2+1\right)=0\)
+> b-1=0\(\Rightarrow b=1\Leftrightarrow x-y+3=1\)
\(\)Khi đó pt (2) \(\Leftrightarrow x^2+\left(x+3\right)\left(x+2+1\right)=x+16\Leftrightarrow x^2+\left(x+3\right)^2=x+16\)
\(\Leftrightarrow x^2+x^2+6x+9=x+16\Leftrightarrow2x^2+5x-7=0\)
Có : 2+5-7=0
Nên pt trên có 2 no \(x_1=1\left(tm\right);x_2=-\frac{7}{2}\left(ktm\right)\)
\(\Rightarrow1-y+3=1\Leftrightarrow y=3\left(tm\right)\)
+>\(a^2b+a^2+1=0\Leftrightarrow\left(x+2\right)\left(x+3-y\right)+x+3=0\)(3)
Đặt \(x+3=m\). Pt(3) có dạng \(\left(m-1\right)\left(m-y\right)+m=0\Leftrightarrow m^2-m-my+y+m=0\Leftrightarrow m^2=y\left(m-1\right)\)
Nếu \(m-1=0\Leftrightarrow x+3-1=0\Leftrightarrow x=-2\left(tm\right)\Rightarrow y=0\left(tm\right)\)
Nhưng k tm pt 2
\(\Rightarrow m-1\ne0\Rightarrow y=\frac{m^2}{m-1}=\frac{\left(x+3\right)^2}{x+2}\)
Thay vào pt (2) ta được \(x^2+\left(x+3\right)\left(2x+5-\frac{\left(x+3\right)^2}{x+2}\right)=x+16\)
ĐẾn đây tự nhân chéo chuển vế ta được \(2x^3+7x^2-8x-29=0\)