K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

Vì \(n\in Z^+\)nên\(n\left(n+1\right)\left(n+2\right)>n^3\Rightarrow\sqrt[3]{n\left(n+1\right)\left(n+2\right)}>n\)

\(\Rightarrow\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}>n\)(1)

Lại có:\(n^2+2n+1>n^2+2n\Rightarrow\left(n+1\right)^2>n\left(n+2\right)\Rightarrow\left(n+1\right)^3>n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow n+1>\sqrt[3]{n\left(n+1\right)\left(n+2\right)}\\ \Rightarrow\sqrt[3]{n^3+3n^2+3n+1}>\sqrt[3]{n^3+3n^2+2n}\)

\(\Rightarrow\sqrt[3]{n^3+3n^2+2n+n+1}>\sqrt[3]{n^3+3n^2+2n+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)

\(\Rightarrow\sqrt[3]{\left(n+1\right)^3}>\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)

Tương tự \(\Rightarrow n+1>\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)(2)

Từ (1) và (2) suy ra:

\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}< n+1\)

30 tháng 8 2016

\(n\in Z^+\)nên n2 < n2 + 2n < n2 + 2n + 1 <=> n2 < n(n + 2) < (n + 1)2 => n3 < n(n + 1)(n + 2) < (n + 1)3 

=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)}< n+1\)

=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)}< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n}\)\(< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n+1}\)\(=\sqrt[3]{\left(n+1\right)\left(n^2+2n+1\right)}=\sqrt[3]{\left(n+1\right)\left(n+1\right)^2}=n+1\)

=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n}\)

\(< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}}< n+1\)

Tiếp tục như vậy,ta có đpcm.

30 tháng 8 2016

A B C H x c a b D

Ta có: \(tan\frac{B}{2}=\frac{x}{c}\)

Lại có \(AB=BH=c\Rightarrow HC=a-c\)

Ta có: \(DC^2=DH^2+DC^2\Rightarrow\left(b-x\right)^2=x^2+\left(a-c\right)^2\)

\(\Rightarrow x^2-2bx+b^2=x^2+\left(a-c\right)^2\Rightarrow x=\frac{b^2-\left(a-c\right)^2}{2b}=\frac{a^2-c^2-a^2+2ac-c^2}{2b}\)

\(=\frac{2ac-2c^2}{2b}=\frac{c\left(a-c\right)}{b}\)

\(\left(\frac{x}{c}\right)^2=\frac{\left(a-c\right)^2}{b^2}=\frac{\left(a-c\right)^2}{a^2-c^2}=\frac{a-c}{a+c}\)

\(\Rightarrow tan\frac{B}{2}=\sqrt{\frac{a-c}{a+c}}\)

31 tháng 8 2016

ko biet

30 tháng 8 2016

cosi đi 

30 tháng 8 2016

trong quyển nâng cao phát triển toán 9 đó

rất bổ ích đấy mua về mà đọc 

29 tháng 8 2016

ta có \(3x=1-\sqrt[3]{\frac{25+\sqrt{621}}{2}}-\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)

<=> \(1-3x=\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)

<=> \(\left(1-3x\right)^3=\left(\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}\right)^3\)

<=> \(1-9x+27x^2-27x^3=\frac{25+\sqrt{621}}{2}+\frac{25-\sqrt{621}}{2}+3\left(\frac{25+\sqrt{621}}{2}\cdot\frac{25-\sqrt{621}}{2}\right)\left(1-3x\right)\)( vì  \(\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}=1-3x\)....phía trên 2 dòng )

<=> \(1-9x+27x^2-27x^3=25+3\cdot1\cdot\left(1-3x\right)\)

<=> \(1-9x+27x^2-27x^3=25+3-9x\)

<=> \(1-9x+27x^2-27x^3=28-9x\)

<=> \(27x^3-27x^2+27=0\)

<=.\(27\left(x^3-x^2+1\right)=0\)

<=. \(x^3-x^2+1=0\)

pt \(x^3-x^2+1=0\) và pt \(x^5+x+1=0\) đều có nghiệm chung 

vậy đccm

29 tháng 8 2016

Bài của phan tuấn anh nên bổ sung

\(x^5+x+1=\left(x^3-x^2+1\right)\left(x^2+x+1\right)=\left(x^3-x^2+1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

29 tháng 8 2016

dùng hlt trong tam giác 

30 tháng 8 2016

CÓ VỀ ĐỀ BÀI SAI Ở CHỖ ĐẲNG THỨC ! 

29 tháng 8 2016

Từ giả thiết đề bài ta có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
                                        \(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0.\)
Có: \(a^2+b^2+c^2=1\Rightarrow\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
Từ đó ta có: \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0.\)
Dấu bằng xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0.\)
Kết hợp với điều kiện : \(a^2+b^2+c^2=1\)và \(a^3+b^3+c^3=1\)ta tìm được bộ ba số: a = 1; b = 0; c = 0 hoặc a= 0; b = 1; c = 0 hoặc a = 0; b = 0; c = 1.
Từ đó tìm ra S = 1 .

29 tháng 8 2016

THEO MÌNH a = 1    b = 0    c = 0 hoặc là a = 0     b = 1    c = 0

\(\Rightarrow\)S = 1      mình đã rất mỏi tay nên ko diễn giải dc  

FC : ĐÃ RẤT CỐ GẮNG

27 tháng 8 2016

Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P

20 tháng 9 2016

x+y =0

=> P = 1

26 tháng 8 2016

Xét \(F+1=ab+bc+2ac+a^2+b^2+c^2\)

\(\Leftrightarrow F+1=\left(a+c\right)^2+b\left(a+c\right)+b^2\)

\(\Leftrightarrow\left(a+c\right)^2+b\left(a+c\right)+b^2-F-1=0\left(6\right)\)

Ta coi (6) là pt bậc 2 ẩn \(t=\left(a+c\right)\)

Để (6) có nghiệm thì

\(\Delta=b^2-4.1.\left(b^2-F-1\right)\ge0\)

\(\Rightarrow F\ge-1+\frac{3}{4}b^2\ge-1\)

Dấu = khi b=0 và \(a=-c=\pm\frac{\sqrt{2}}{2}\) 

26 tháng 8 2016

1 bài cực trị hay i it :))