K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng bđt AM-GM ta có

\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)

  Ta có   \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng bđt AM-GM ta có

\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)

18 tháng 2 2020

Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ

\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)

\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)

\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)

\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{a\left(b+c\right)}{b+c}+\frac{b^2}{a+c}+\frac{b\left(a+c\right)}{a+c}+\frac{c^2}{a+b}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

=>đpcm

3 tháng 9 2016

Ta có : \(\frac{a}{a+\sqrt{2013a+bc}}=\frac{a}{a+\sqrt{a^2+ab+ac+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Theo bất đẳng thức Bunhiacopxki : \(\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ab}+\sqrt{ac}\)

\(\Rightarrow\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

hay \(\frac{a}{a+\sqrt{2013a+bc}}\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự : \(\frac{b}{b+\sqrt{2013b+ac}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

\(\frac{c}{c+\sqrt{2013c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Cộng các bất đẳng thức trên theo vế được \(\frac{a}{a+\sqrt{2013a+bc}}+\frac{b}{b+\sqrt{2013b+ac}}+\frac{c}{c+\sqrt{2013c+ab}}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\\a+b+c=2013\\a,b,c>0\end{cases}}\) \(\Leftrightarrow a=b=c=671\)

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

ta chứng minh 

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge1\)

Thật vậy \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c=1\)

=>( dpcm)

2 tháng 9 2016

234567890vvi hai thia com bang chin bat loa vi vay nen ban kick  cho minh

31 tháng 8 2016

ko biết

31 tháng 8 2016

Bài quá dễ tự làm đi 

k mình mình giải cho

1 tháng 9 2016

Ta có ˆHKF=ˆFDAHKF^=FDA^ (vì AKFD nội tiếp)
=ˆFBD=FBD^ (góc có cạnh tương ứng vuông góc)
⇒⇒ HKFB nội tiếp
⇒ˆHFB=ˆHKB=ˆACB⇒HFB^=HKB^=ACB^ (vì AKBC nội tiếp) (1)
có ˆABC=ˆADF=ˆAEFABC^=ADF^=AEF^
⇒⇒ BFEC nội tiếp
⇒ˆBFE=180∘−ˆACB⇒BFE^=180∘−ACB^ (2)
từ (1, 2)⇒ˆBFE=180∘−ˆHFB⇒BFE^=180∘−HFB^
⇒⇒ H, F, E thẳng hàng (đpcm)

1 tháng 9 2016
nho k nha
31 tháng 8 2016

\(C=ab+2bc+3ca=ab+ca+2bc+2ca\)
   \(=a\left(b+c\right)+2c\left(a+b\right)\)  
   \(=a\left(1-a\right)+2c\left(1-c\right)=-a^2+a-2c^2+2c\)
    \(=-\left(a-\frac{1}{2}\right)^2-2\left(c-\frac{1}{2}\right)^2+\frac{3}{4}\le\frac{3}{4}.\)
Vậy GTLN của C = \(\frac{3}{4}\)khi \(a=\frac{1}{2};c=\frac{1}{2};b=0.\)

3 tháng 9 2016

<br class="Apple-interchange-newline"><div id="inner-editor"></div>C=ab+2bc+3ca=ab+ca+2bc+2ca
   =a(b+c)+2c(a+b)  
   =a(1−a)+2c(1−c)=−a2+a−2c2+2c
    =−(a−12 )2−2(c−12 )2+34 ≤34 .
Vậy GTLN của C = 34 khi a=12 ;c=12 ;b=0.

31 tháng 8 2016

A B C D E F

Xét tam giác vuông ABC, theo hệ thức lượng: \(BD=\frac{c^2}{a}.\)

Xét tam giác vuông BDA, ta có: \(m=EB=\frac{BD^2}{BA}=\frac{c^3}{a^2}\)

Hoàn toàn tương tự: \(n=\frac{b^3}{a^2}\)

Vậy thì \(a.m.n=\frac{b^3.c^3}{a^3}\)

Lại có: \(bc=ah\Rightarrow\frac{bc}{a}=h\Rightarrow\frac{b^3c^3}{a^3}=h^3\Rightarrow a.m.n=h^3.\)

31 tháng 8 2016

chiu chiu :v

30 tháng 8 2016

chưa học