Cho P(x) là đa thức với hệ số nguyên. Chứng minh rằng không tồn tại các số nguyên phân biệt a, b, c sao cho P(a) = b, P(b) = c, P(c) = a. tks mina
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Từ gt đề bài,ta có : (x2 - yz).y.(1 - xz) = (y2 - xz).x.(1 - yz)
=> 0 = VT - VP = (x2y - x3yz - y2z + xy2z2) - (xy2 - xy3z - x2z + x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)
= (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)[xy + xz + yz - xyz(x + y + z)]
Vì\(x\ne y\Rightarrow x-y\ne0\)nên xy + xz + yz - xyz(x + y + z) = 0 => xy + xz + yz = xyz(x + y + z)
Vì\(xyz\ne0\)nên chia 2 vế cho xyz,ta có :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)= x + y + z (đpcm)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!
Từ: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\)
\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{ac}+2\sqrt{bc}=4\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=1.\)vì a + b + c = 2
Từ đó: \(a+1=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right).\)
Tương tự: \(b+1=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\), \(c+1=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right).\)
Từ đó: \(\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}=\frac{2}{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}.\)
Tương tự ta có: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}\)
\(=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}+\frac{\sqrt{c}}{\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\).
Ta có: VP = VT nên có đpcm.
Cô hướng dẫn nhé.
a. Kẻ \(DK\perp BC.\)
Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)
b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)
\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)
c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)
pt <=>\(2\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}=16-2x^2\)
\(\Leftrightarrow\sqrt{x^2-4+\sqrt{x^2-4}+4}=16-x^2\)
\(\Leftrightarrow\sqrt{x^2-4}+2=16-2x^2\)
đặt \(\sqrt{x^2-4}=t\)
\(pt\Leftrightarrow t+2=16-t^2\)
giải ra đc t =1,5 hoặc t=-2
từ đó => x
A B C M N P G x y
Cho tam giác ABC với AM, BN, CP là các đường trung tuyến. G là trọng tâm.
Khi đó do AM , BN, CP đều bé hơn 1 nên AG, BG, CG đều nhỏ hơn \(\frac{2}{3}\) GM; GN; GP đều nhỏ hơn \(\frac{1}{3}.\)
Gọi độ dài các đường cao hạ từ B và C xuống AM lần lượt là x và y.
Ta có: \(S_{ABC}=S_{ABG}+S_{AGC}+S_{BGM}+S_{CGM}\)
\(=\frac{1}{2}AG.x+\frac{1}{2}AG.y+\frac{1}{2}GM.x+\frac{1}{2}GM.y\)
\(< \frac{1}{2}\frac{2}{3}.x+\frac{1}{2}.\frac{2}{3}.y+\frac{1}{2}.\frac{1}{3}.x+\frac{1}{2}.\frac{1}{3}.y\)
\(=\frac{1}{2}\left(x+y\right)\)
Lại thấy x, y là độ dài các đường vuông góc nên nhỏ hơn độ dài đường xiên. Hay \(x< BG< \frac{2}{3};y< GC< \frac{2}{3}\)
Vậy \(S_{ABC}< \frac{1}{2}\left(x+y\right)< \frac{1}{2}\left(\frac{2}{3}+\frac{2}{3}\right)=\frac{2}{3}< 0,67.\)
Vậy \(S_{ABC}< 0,67\left(đpcm\right)\)
\(ab+bc+ac=36abc\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=36\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=36\left(1\right)\)
\(M=\frac{1}{a+b+a+c}+\frac{1}{a+b+b+c}+\frac{1}{a+c+b+c}\)
áp dụng BĐT cô si
\(\Rightarrow M\le\frac{1}{2}.\left(\frac{1}{\sqrt{ab}+\sqrt{ac}}+\frac{1}{\sqrt{ab}+\sqrt{bc}}+\frac{1}{\sqrt{ac}+\sqrt{bc}}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{\sqrt{a}.\left(\sqrt{b}+\sqrt{c}\right)}+\frac{1}{\sqrt{b}.\left(\sqrt{a}+\sqrt{c}\right)}+\frac{1}{\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(\left(\frac{1}{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)}+\frac{1}{\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)}+\frac{1}{\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(\le\frac{1}{2}.\left(\frac{1}{\sqrt{a}.\sqrt{\sqrt{bc}}}+\frac{1}{\sqrt{b}.\sqrt{\sqrt{ac}}}+\frac{1}{\sqrt{c}.\sqrt{\sqrt{ab}}}\right)\)
\(\left(\frac{1}{\sqrt{a}.\sqrt{\sqrt{bc}}}+\frac{1}{\sqrt{b}.\sqrt{\sqrt{ac}}}+\frac{1}{\sqrt{c}.\sqrt{\sqrt{ab}}}\right)^2\)
\(\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{ab}}\right)\)(2)
\(\left(\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{ab}}\right)^2\)
\(\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)\(=36^2\)
\(\Rightarrow\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{ab}}\le36\)(3)
từ 1 , 2 , 3
\(\Rightarrow M\le\frac{1}{2}.\sqrt{36^2}=18\)
dấu = xảy ra khi .............
Ta có
a21 + \(\frac{1}{1999^2}\)\(\ge\frac{2a_1}{1999}\)
.............
a21999 + \(\frac{1}{1999^2}\ge2\frac{a_{1999}}{1999}\)
Cộng vế theo vế ta được
a21 + a22 + ...+ a21999 + \(\frac{1}{1999}\)\(\ge\)(a1 + a2 + ...+ a1999 ) \(\frac{2}{1999}\)= \(\frac{2}{1999}\)
<=> a21 + a22 + ...+ a21999 \(\ge\frac{1}{1999}\)
Ta có PT (1) <=> ( x + \(2\sqrt{x}\)+ 1) - (y + z + \(2\sqrt{yz}\)) - \(2\left(\sqrt{y}+\sqrt{z}\right)\)- 1 = 0
<=> (\(1+\sqrt{x}\))2 - (\(1+\sqrt{y}+\sqrt{z}\))2 = 0
<=> \(\orbr{\begin{cases}2+\sqrt{x}+\sqrt{y}+\sqrt{z}=0\\\sqrt{x}-\sqrt{y}-\sqrt{z}=0\end{cases}}\)
Thế vào pt (2) được
y + z \(-\sqrt{3z}-\sqrt{yz}\)+ 1 = 0
<=> (\(\frac{\sqrt{z}}{2}-\sqrt{y}\))2 + (\(\frac{\sqrt{3z}}{2}-1\))2 = 0
<=> \(\hept{\begin{cases}z=\frac{4}{3}\\y=\frac{1}{3}\\x\:=3\end{cases}}\)
I agree with 'lien hoang' 's opinion.He needs the solution,not the answer.
Mình đồng ý với liên hoàng.Bạn đó cần lời giải chứ không cần đáp số.Có phải toán trắc nghiệm đâu!
????????????????????????????????????