K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

Bài toán phụ: chứng minh \(\left(x+y\right)^2\ge4xy\) với \(x,y\in R\)

Giải: Ta có: \(\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow\)\(x^2-2xy+y^2\ge0\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) (luôn đúng).

Vậy \(\left(x+y\right)^2\ge4xy\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=y.\)

Theo đề ta có \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}=\frac{1}{\sqrt{abc}}\)\(\Leftrightarrow\)\(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{\sqrt{abc}}=\frac{1}{\sqrt{abc}}\)

Suy ra \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\)

Mặt khác \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)\(\Leftrightarrow\)\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\)

\(\Leftrightarrow\)\(a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)\(\Leftrightarrow\)\(a+b+c+2=4\)\(\Leftrightarrow\)\(a+b+c=2\)

Theo bài toán phụ ta có: \(\left(a+b+c\right)^2=\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)

Mà \(a+b+c=2\)\(\Rightarrow\)\(4\ge4a\left(b+c\right)\)\(\Leftrightarrow\)\(1\ge a\left(b+c\right)\)\(\Leftrightarrow\)\(b+c\ge a\left(b+c\right)^2\)

Do \(\left(b+c\right)^2\ge4bc\) nên \(a\left(b+c\right)^2\ge4abc\) hay \(b+c\ge4abc\) (đpcm).

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b+c\\b=c\end{cases}}\)\(\Leftrightarrow\)\(b=c=\frac{1}{2},\) \(a=1\)

19 tháng 8 2016

\(gt\Rightarrow1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{a^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{a}+\frac{1}{c}\right)\)

\(\frac{1}{ab}\sqrt{\frac{\left(a^2+1\right)\left(b^2+1\right)}{c^2+1}}=\sqrt{\frac{\left(1+\frac{1}{a^2}\right)\left(1+\frac{1}{b^2}\right)}{c^2\left(1+\frac{1}{c^2}\right)}}\)

\(=\frac{1}{c}.\sqrt{\frac{\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{a}+\frac{1}{c}\right)\left(\frac{1}{b}+\frac{1}{a}\right)\left(\frac{1}{b}+\frac{1}{c}\right)}{\left(\frac{1}{c}+\frac{1}{a}\right)\left(\frac{1}{c}+\frac{1}{b}\right)}}=\frac{1}{c}\sqrt{\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)

\(=\frac{1}{c}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{bc}+\frac{1}{ca}\)

Tương tự với các cụm còn lại, ta được

\(A=2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2\)

bài này khó thật, nhưng bạn đừng buồn, sẽ có nhiều bạn khác giúp bạn

nha avt246338_60by60.jpgNguyễn Quang Linh à

19 tháng 8 2016

à. không đọc hết đề
Đến đoạn \(x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2019}=-y^{2019}\Leftrightarrow x^{2019}+y^{2019}=0\Leftrightarrow x^{2019}+y^{2019}+1=1\)
 Hay P=1
Vậy P=1
 

19 tháng 8 2016

lm j mà vất vả thế

Nhân cả 2 vế của pt đâu với \(x-\sqrt{x^2+3}\) đc:

\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)

TƯơng tự nhân 2 vế của pt đầu vs \(y-\sqrt{y^2+3}\) đc:

\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)

từ (1) và (2) =>2(x+y)=0

=>x+y=0

=>lm tiếp như trên thôi

19 tháng 8 2016

Theo mình đoán là phương trình này vô nghiệm. Nhưng mình không chứng minh được điều này :((

19 tháng 8 2016

có nghiệm đấy bác : ))

18 tháng 8 2016

\(3\left(2a^2+b^2\right)=\left(1^2+1^2+1^2\right)\left(a^2+a^2+b^2\right)\ge\left(a+a+b\right)^2=\left(2a+b\right)^2\)

\(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)

\(gt\rightarrow7\left(x^2+y^2+z^2\right)=6\left(xy+yz+zx\right)+2015\)

\(\Leftrightarrow7\left(x+y+z\right)^2=20\left(xy+yz+zx\right)+2015\)

Ta có: \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)

\(\Rightarrow7\left(x+y+z\right)^2\le\frac{20}{3}\left(x+y+z\right)^2+2015\)

\(\Leftrightarrow\frac{1}{3}\left(x+y+z\right)^2\le2015\)

\(\Leftrightarrow x+y+z\le\sqrt{6045}\)

\(P\le\frac{1}{3}\left(x+y+z\right)\le\frac{\sqrt{6045}}{3}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{\sqrt{6045}}{3}\)hay \(a=b=c=\left(\frac{\sqrt{6045}}{3}\right)^{-1}\)

17 tháng 8 2016

Hình vẽ: Gọi gia điểm của AC và BD là F.

CM AEDF là hình bình hành từ đó suy ra SADE=SADF=1.SADE=SADF=1.

Đặt SBFC=x⇒SCDF=1−x.SBFC=x⇒SCDF=1−x.

CM ΔBFCΔBFC đồng dạng với ΔDFA.ΔDFA.

Tìm được SCDF=−1+√52.SCDF=−1+52.

⇒So=3.618033989dm2⇒So=3.618033989dm2.

17 tháng 8 2016

Giả sử ngũ giác \(ABCDE\) thỏa mãn đk bài toán

Xét \(\Delta BCD\)Và \(ECD\)và \(S_{BCD}=S_{ECD}\)đáy \(CD\)chung, các đường cao hạ từ \(B\)và \(E\)xuống \(CD\) bằng nhau => \(EB\)\(CD\),Tương tự \(AC\)//\(ED\) ,\(BD\)\(AE\), \(CE\)\(AB\), \(DA\)\(BC\)

Gọi \(I\) \(=EC\)\(BC\)=> \(ABIE\)là hình bình hành

=> \(S_{IBE}=S_{ABE}=1\)Đặt\(S_{ICD}=x< 1\)

=> SIBC = SBCD - SICD = 1-x = SECD - SICD = SIED

Lại có: \(\orbr{\begin{cases}S_{ICD}=IC=S_{IBC}\\S_{IDE}=IE=S_{IBE}\end{cases}}\)Hay \(\orbr{\begin{cases}x\\1-x\end{cases}}\)\(=\orbr{\begin{cases}1-x\\1\end{cases}}\)

=> x2-3x+ 1 = 0 => x =\(\frac{3+5}{2}\)Do x<1 => x=\(\frac{3-5}{2}\)

Vậy \(S_{IBE}=\frac{5-1}{2}\)

Do đó SABCDE = SEAB + SEBI + SBCD + SIED

\(=3+\frac{5-1}{2}=\frac{5+5}{2}=5\)

 

16 tháng 8 2016

Đkxđ: \(y\ge-1.\)
Phương trình tương đương với: \(x^2-y^2=\sqrt{y+1}\Leftrightarrow\left(\left|x\right|-y\right)\left(\left|x\right|+y\right)=\sqrt{y+1}\)
                                                                                      \(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)^2=y+1\)
TH1: \(y\ge0.\)
Nếu  |x| khác y,: Dễ dàng nhận thấy \(\hept{\begin{cases}\left(\left|x\right|+y\right)^2\ge y+1\\\left(\left|x\right|-y\right)^2\ge1\end{cases}}\)
Để dấu bằng xảy ra thì: \(\hept{\begin{cases}\left(\left|x\right|+y\right)^2=y+1\\\left(\left|x\right|-y\right)^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left|x\right|=1\\y=0\end{cases}}}\)
Vậy x = 1 hoặc x = -1, y = 0.
-  Nếu |x| = y, ta có phương trình: \(x^2=x^2+\sqrt{y+1}\Leftrightarrow y=-1\). ( loại).
TH2: y = -1 Thay vào phương trình ta tính được x = 1 hoặc  x = -1.
Vậy phương trình có cặp nghiệm nguyên là: (x,y) = (-1,1); (1, 1); (1;0); (-1,0)

16 tháng 8 2016

pt đã cho \(\Leftrightarrow\sqrt{3}-x=x^2\left(\sqrt{3}+x\right)\Leftrightarrow x^3+x^2\sqrt{3}+x-\sqrt{3}=0\)
\(\Leftrightarrow x^3+\frac{3.\sqrt{3}}{3}.x^2+3.\left(\frac{\sqrt{3}}{3}\right)x+\frac{\sqrt{3}}{9}=\frac{10\sqrt{3}}{9}\)
\(\Leftrightarrow\left(x+\frac{\sqrt{3}}{3}\right)^3=\frac{10\sqrt{3}}{9}\Rightarrow x+\frac{\sqrt{3}}{3}=\sqrt[3]{\frac{10\sqrt{3}}{9}}\Rightarrow x=\sqrt[3]{\frac{10\sqrt{3}}{9}}-\frac{\sqrt{3}}{3}\)

12 tháng 9 2016

sao lại = 10 căn 3 /3 hả bạn , giảng cho mik

19 tháng 8 2016

Áp dụng bđt cô si với 2 số dương 4x và 1/4x ta có: 4x+1/4x  ≥  2(1)

Đặt (4√x +3)/ (x+1) =B ; √x =t => x=t^2

ta có  : B(t^2 +1) = 4t+3

<=>Bt^2 -4t+B-3=0

Xét delta =b^2 -4ac = 16-4B(B-3)= -4B^2 +12B+16  ≥  0(*) (Để phương trình có gtnn thì pt phải có nghiệm nên delta  ≥  0)

Từ (*) => B^2 -3B-4  ≤ 0

<=> (B-4)(B+1) ≤ 0
=> -1 ≤ B ≤ 4

=>-B ≥ -4(2)

TỪ (1) và (2) => A  ≥ 2+(-4)+2016=2014

Dấu = xảy ra <=> 4x=1/4x và B=4 (tự giải tìm x , ta sẽ được x = 1/4)

3 tháng 5 2018

Xét \(B=\frac{x+1}{4\sqrt{x}+3}\Leftrightarrow16B=\frac{16x+16}{4\sqrt{x}+3}.\)\(=\frac{\left(4\sqrt{x}+3\right)\left(4\sqrt{x}-3\right)+25}{4\sqrt{x}+3}\)

\(=4\sqrt{x}-3+\frac{25}{4\sqrt{x}+3}=4\sqrt{x}+3+\frac{25}{4\sqrt{x}+3}-6\)

Áp dụng BĐT Cauchy

\(16B\ge2\sqrt{25}-6=4\Leftrightarrow B\ge\frac{1}{4}\)

\(\Rightarrow-\frac{4\sqrt{x}+3}{x+1}\ge-4\)

Áp dụng bđt Cauchy

\(\Rightarrow A\ge2\sqrt{\frac{4x.1}{4x}}-4+2016=2014\)

Vậy Min A=2014 khi x=1/4