K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

A B C D N M x K H

Hình vẽ không được đẹp cho lắm :))

Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ

Từ A lại kẻ đường thẳng vuông góc với CD tại H.

Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK

=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK

Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)

Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)

\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)

Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)

2 tháng 10 2016

\(a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Rightarrow a^{101}-a^{100}+b^{101}-b^{100}=0\)

\(\Rightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)

  • Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều dương nên:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)>0\) không đúng với (1)

  • Nếu a và b cùng nhỏ hơn 1 thì: a-1 và b-1 đều âm nên:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)< 0\) không đúng với (1)

  • Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1

Không mất tính tổng quát, giả sử \(a\ge1;b\le1\)

Ta có:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\)

\(\Rightarrow a^{100}\left(a-1\right)=b^{100}\left(b-1\right)\left(2\right)\)

Lại có:

\(a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Rightarrow a^{102}-a^{101}+b^{102}-b^{101}=0\)

\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)+b\cdot b^{100}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot b^{100}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot a^{100}\left(a-1\right)=0\)(theo (2))

\(\Rightarrow a^{100}\left(a-1\right)\left(a-b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-1=0\\a-b=0\end{cases}}\)(do a>0)

\(\Rightarrow a=b=1\)\(\Rightarrow P=1^{2007}+1^{2007}=2\)

2 tháng 10 2016

<br class="Apple-interchange-newline"><div id="inner-editor"></div>a1;b1

Ta có:

a100(a1)+b100(b1)=0

a100(a1)=b100(b1)(2)

Lại có:

a101+b101=a102+b102

a102a101+b102b101=0

<br class="Apple-interchange-newline"><div id="inner-editor"></div>a100(a1)+b100(b1)=0(1)

  • Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều dương nên:

a100(a1)+b100(b1)<0 không đúng với (1)

  • Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1

Không mất tính tổng quát, giả sử 

<br class="Apple-interchange-newline"><div id="inner-editor"></div>a100(a1)=b100(b1)(2)

Lại có:

a101+b101=a102+b102

a102a101+b102b101=0

<br class="Apple-interchange-newline"><div id="inner-editor"></div>a100(a1)=b

30 tháng 9 2016

Trên cạnh BC lấy điểm D sao cho CD=CA. Gọi góc CAD, DAB, ADC lần lượt là A1, A2,D1 

Ta có 
A=A1+A2=D1+A2=B+2.A2
Theo đề bài ta có A=B+2.C

=>C=A2
Dễ dàng chứng minh tam giác ABC đồng dạng tam giác DBA
=>AB/DB=BC/AB
Đặ BC=a ; AB=c ;Ac=b 

c/(a−b)=a/c  => c2 = a(a−b)
Do các cạnh của tam giác ABC là ba STN liên tiếp và a>b nên a-b=1 hoặc a-b=2
Sau đó giải hai trường hợp đó ra nghiệm thích hợp AB=2 , AC= 3 ; BC=4

14 tháng 3 2017

CM max tắt 

29 tháng 9 2016

A B C M N P O

Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)

Áp dụng bđt Bunhiacopxki, ta có : 

\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)

\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)

Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)

9 tháng 1 2018

Neu đề bài trên kia là cho >_ 6 thì chứng minh thế nào

29 tháng 9 2016

Áp dụng Bđt Cô-si ta có:

  • \(a+a+\frac{b^2}{4}+\frac{2}{ab}+\frac{2}{ab}\ge5\sqrt[5]{\frac{4a^2b^2}{4a^2b^2}}=5\)

\(\Rightarrow9\left(2a+\frac{b^2}{4}+\frac{4}{ab}\right)\ge45\left(1\right)\)

  • \(\frac{b^2}{4}+\frac{b^2}{4}+\frac{b^2}{4}+\frac{c^3}{27}+\frac{c^3}{27}+\frac{6}{bc}+\frac{6}{bc}+\frac{6}{bc}+\frac{6}{bc}+\frac{6}{bc}+\frac{6}{bc}\ge11\)

\(\Rightarrow\frac{3b^2}{4}+\frac{2c^3}{27}+\frac{36}{bc}\ge11\left(2\right)\)

  • \(\frac{c^3}{27}+a+a+a+\frac{3}{ac}+\frac{3}{ac}+\frac{3}{ac}\ge7\)

\(\Rightarrow4\left(\frac{c^3}{27}+3a+\frac{9}{ca}\right)\ge28\left(3\right)\)

Cộng 3 vế của (1),(2) và (3) ta có:

\(S\ge84\).Dấu = khi \(\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

Vậy MinS=84 khi \(\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

29 tháng 9 2016

dạng này tìm điểm rơi của nó là ra 

30 tháng 9 2016

Ta thấy hàm số này chỉ có cực đại. Và bị chặn 2 đầu. Vậy đầu chặn nào bé hơn chính là min

Vì 4 - 2x2 \(\ge0\)

\(-\sqrt{2}\le x\le\sqrt{2}\)

Tại x = \(\sqrt{2}\) thì hàm số = \(2\sqrt{2}\)

Tại x = -\(\sqrt{2}\) thì hàm số = - \(2\sqrt{2}\)

Vậy min là - \(2\sqrt{2}\)tại x = - \(\sqrt{2}\)

29 tháng 9 2016

\(\left(4x-1\right)\sqrt{x^2+1}-\left(4x-1\right)\left(x+\frac{1}{\sqrt{3}}\right)=2x^2-2x+2-\left(4x-1\right)\left(x+\frac{1}{\sqrt{3}}\right)\)

\(\Leftrightarrow\frac{\left(4x-1\right)\left(\frac{2}{3}-\frac{2x}{\sqrt{3}}\right)}{\sqrt{x^2+1}+x+\frac{1}{\sqrt{3}}}=\left(-2x^2+\frac{2x}{\sqrt{3}}\right)-x\left(1+2\sqrt{3}\right)+\frac{2\sqrt{3}+1}{\sqrt{3}}\)

\(\Leftrightarrow\left(x-\frac{1}{\sqrt{3}}\right)\left(\frac{\frac{2}{\sqrt{3}}\left(1-4x\right)}{\sqrt{x^2+1}+x+\frac{1}{\sqrt{3}}}+2x+1+2\sqrt{3}\right)=0\)

Mà điều kiện xác định là \(x\ge\frac{1}{4}\)nên \(\left(\frac{\frac{2}{\sqrt{3}}\left(1-4x\right)}{\sqrt{x^2+1}+x+\frac{1}{\sqrt{3}}}+2x+1+2\sqrt{3}\right)>0\)

Vậy phương trình có nghiệm duy nhất là \(x=\frac{1}{\sqrt{3}}\)

16 tháng 10 2016

sao bạn nghĩ ra được cách thêm bớt \(\left(4x-1\right)\left(x+\frac{1}{\sqrt{3}}\right)\)  vậy ???

28 tháng 9 2016

A B C O D E F

Ta có : \(\frac{OD}{AD}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{OE}{BE}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OF}{CF}=\frac{S_{ABO}}{S_{ABC}}\)

\(\Rightarrow\frac{OD}{AD}+\frac{OE}{BE}+\frac{OF}{CF}=\frac{S_{ABC}}{S_{ABC}}=1\)

\(\Rightarrow\left(1-\frac{OD}{AD}\right)+\left(1-\frac{OE}{BE}\right)+\left(1-\frac{OF}{CF}\right)=2\)

\(\Rightarrow\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}=2\)

hay \(R\left(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}\right)=2\Rightarrow\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}=\frac{2}{R}\) 

mà ta có \(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}\ge\frac{9}{AD+BE+CF}\)

\(\Rightarrow\frac{2}{R}\ge\frac{9}{AD+BE+CF}\)

\(\Rightarrow AD+BE+CF\ge\frac{9R}{2}\)(đpcm)

28 tháng 9 2016

Khó quá! Em mới học lớp 7

28 tháng 9 2016

xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ


 

28 tháng 9 2016

Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !