Cho \(a,b,c>0.\)Tìm min của \(S=30a+3b^2+\frac{2c^3}{9}+36\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy hàm số này chỉ có cực đại. Và bị chặn 2 đầu. Vậy đầu chặn nào bé hơn chính là min
Vì 4 - 2x2 \(\ge0\)
\(-\sqrt{2}\le x\le\sqrt{2}\)
Tại x = \(\sqrt{2}\) thì hàm số = \(2\sqrt{2}\)
Tại x = -\(\sqrt{2}\) thì hàm số = - \(2\sqrt{2}\)
Vậy min là - \(2\sqrt{2}\)tại x = - \(\sqrt{2}\)
\(\left(4x-1\right)\sqrt{x^2+1}-\left(4x-1\right)\left(x+\frac{1}{\sqrt{3}}\right)=2x^2-2x+2-\left(4x-1\right)\left(x+\frac{1}{\sqrt{3}}\right)\)
\(\Leftrightarrow\frac{\left(4x-1\right)\left(\frac{2}{3}-\frac{2x}{\sqrt{3}}\right)}{\sqrt{x^2+1}+x+\frac{1}{\sqrt{3}}}=\left(-2x^2+\frac{2x}{\sqrt{3}}\right)-x\left(1+2\sqrt{3}\right)+\frac{2\sqrt{3}+1}{\sqrt{3}}\)
\(\Leftrightarrow\left(x-\frac{1}{\sqrt{3}}\right)\left(\frac{\frac{2}{\sqrt{3}}\left(1-4x\right)}{\sqrt{x^2+1}+x+\frac{1}{\sqrt{3}}}+2x+1+2\sqrt{3}\right)=0\)
Mà điều kiện xác định là \(x\ge\frac{1}{4}\)nên \(\left(\frac{\frac{2}{\sqrt{3}}\left(1-4x\right)}{\sqrt{x^2+1}+x+\frac{1}{\sqrt{3}}}+2x+1+2\sqrt{3}\right)>0\)
Vậy phương trình có nghiệm duy nhất là \(x=\frac{1}{\sqrt{3}}\)
sao bạn nghĩ ra được cách thêm bớt \(\left(4x-1\right)\left(x+\frac{1}{\sqrt{3}}\right)\) vậy ???
A B C O D E F
Ta có : \(\frac{OD}{AD}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{OE}{BE}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OF}{CF}=\frac{S_{ABO}}{S_{ABC}}\)
\(\Rightarrow\frac{OD}{AD}+\frac{OE}{BE}+\frac{OF}{CF}=\frac{S_{ABC}}{S_{ABC}}=1\)
\(\Rightarrow\left(1-\frac{OD}{AD}\right)+\left(1-\frac{OE}{BE}\right)+\left(1-\frac{OF}{CF}\right)=2\)
\(\Rightarrow\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}=2\)
hay \(R\left(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}\right)=2\Rightarrow\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}=\frac{2}{R}\)
mà ta có \(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}\ge\frac{9}{AD+BE+CF}\)
\(\Rightarrow\frac{2}{R}\ge\frac{9}{AD+BE+CF}\)
\(\Rightarrow AD+BE+CF\ge\frac{9R}{2}\)(đpcm)
xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ
Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !
Để hàm số y xác định thì \(x-a\ge0;2x-a-1\ge0\), với mọi x dương.
Xét hàm số y = x - a, với \(x\ge0.\)
Min y = 0 - a = -a, khi x = 0.
Để \(x-a\ge0,\)với mọi x > 0 thì min \(y=-a\ge0\)hay \(a\le0.\)(1)
Xét hàm số: \(y=2x-a-1\)
Tương tự Min y = -a - 1, khi x = 0.
Để \(2x-a-1\ge0,\)với x > 0 thì min y = - a - 1 \(-a-1\ge0\Leftrightarrow a\le-1\). (2)
Kết hợp điều kiện (1) và (2) ta có:\(a\le-1\)là thỏa mãn đề bài.
Đây là lời giải dựa theo phương pháp " nhìn vấn đề theo quan điểm cực trị " ngoài ra các bạn có thể dùng hàm số đồng biến cũng lập luận gần giống.
Chú ý: x = 0 ta vẫn xét nhưng hiểu được thì các em pahir học qua hàm số liên tục ở lớp 11.
Áp dụng BĐT Cô-si cho 2 số dương ta có:
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\left(1\right)\)
\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\left(2\right)\)
\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\left(2\right)\)
Từ (1) ;(2) và (3) suy ra:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}=6\)
Vậy \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\).Dấu "=" xảy ra <=>\(\hept{\begin{cases}a+b+c=6abc\\\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}\end{cases}=>a=b=c=\frac{1}{\sqrt{2}}}\)
A = \(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
\(=\left(\frac{x}{3}-\frac{2\times\sqrt{3}\sqrt{xy}}{\sqrt{3}}+3y\right)+\left(\frac{2x}{3}-\frac{2\times\sqrt{2}\times\sqrt{3}\sqrt{x}}{\sqrt{2}\times\sqrt{3}}+\frac{3}{2}\right)-\frac{1}{2}\)
\(=\left(\frac{\sqrt{x}}{\sqrt{3}}-\sqrt{3y}\right)^2+\left(\sqrt{\frac{2x}{3}}-\sqrt{\frac{3}{2}}\right)^2-\frac{1}{2}\)
\(\ge-\frac{1}{2}\)
\(\Leftrightarrow\left(x-m\right)^2=1-x^2\)
\(\Leftrightarrow2x^2-2mx+m^2-1=0\)
có \(\Delta'=m^2-2\left(m^2-1\right)=2-m^2\)
phương trình có nghiệm duy nhất khi \(\Delta'=0\)<=> 2-m^2=0 <=> m \(\in\left\{\sqrt{2},-\sqrt{2}\right\}\)
vậy...
Áp dụng Bđt Cô-si ta có:
\(\Rightarrow9\left(2a+\frac{b^2}{4}+\frac{4}{ab}\right)\ge45\left(1\right)\)
\(\Rightarrow\frac{3b^2}{4}+\frac{2c^3}{27}+\frac{36}{bc}\ge11\left(2\right)\)
\(\Rightarrow4\left(\frac{c^3}{27}+3a+\frac{9}{ca}\right)\ge28\left(3\right)\)
Cộng 3 vế của (1),(2) và (3) ta có:
\(S\ge84\).Dấu = khi \(\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
Vậy MinS=84 khi \(\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
dạng này tìm điểm rơi của nó là ra