Cho đường tròn (O;R) dường kính AB . Vẽ 2 tiếp tuyến Ax và By của đường tròn . Gọi M là 1 điểm tùy ý trên cung AB . Tiếp tuyến tại M của đường tròn Ax và By theo thứ tự C,D
a, CM : AC.BD=R2
b, Tìm vị trí của M để chu vi \(\Delta\) OCD nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O C A B N M K M'
a.Gọi M' là giao điểm của CM với đường tròn. Do C thuộc AO nên ta thấy ngay cung MB \(\ge\) cung AM'.
Lại có \(\widehat{CMB}=\frac{sđ\left(BM'\right)}{2}=\frac{180^o-sđ\left(AM'\right)}{2}\); \(\widehat{MBC}=\frac{sđ\left(AM\right)}{2}=\frac{180^o-sđ\left(BM\right)}{2}\)
Vậy nê \(\widehat{CMB}\ge\widehat{MBC}\Rightarrow BC\ge CM.\)
b. Ta thấy tam giác CMN vuông tại C, K là trung điểm MN nên theo định lý về đường trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có: CK = NK = KM.
Lại có do K là trung điểm MN nên \(OK\perp MN.\)
Vậy thì \(CK^2+OK^2=NK^2+OK^2=ON^2=\left(\frac{AB}{2}\right)^2=\frac{AB^2}{4}\) không đổi (đpcm).
\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)
\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)
\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)
\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)
giúp mình câu khác được ko? câu này mình biết làm òi
Ta có : \(\hept{\begin{cases}2x^2+y^2-3xy-4x+3y+2=0\\\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\end{cases}}\)
Xét phương trình đầu : \(2x^2+y^2-3xy-4x+3y+2=0\)
\(\Leftrightarrow\left(2x^2-xy-2x\right)+\left(-2xy+y^2+2y\right)+\left(-2x+y+2\right)=0\)
\(\Leftrightarrow x\left(2x-y-2\right)-y\left(2x-y-2\right)-\left(2x-y-2\right)=0\)
\(\Leftrightarrow\left(2x-y-2\right)\left(x-y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-y-2=0\\x-y-1=0\end{cases}}\)
Từ đó thay y bởi x vào pt còn lại để tìm nghiệm.
ĐKXĐ: z>0
pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)
<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)
<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)
<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)
<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)
<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)
<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)
vậy x=2
A B C D N M x K H
Hình vẽ không được đẹp cho lắm :))
Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ
Từ A lại kẻ đường thẳng vuông góc với CD tại H.
Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK
=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK
Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)
Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)
\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)
Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)
\(a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Rightarrow a^{101}-a^{100}+b^{101}-b^{100}=0\)
\(\Rightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)
\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)>0\) không đúng với (1)
\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)< 0\) không đúng với (1)
Không mất tính tổng quát, giả sử \(a\ge1;b\le1\)
Ta có:
\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\)
\(\Rightarrow a^{100}\left(a-1\right)=b^{100}\left(b-1\right)\left(2\right)\)
Lại có:
\(a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow a^{102}-a^{101}+b^{102}-b^{101}=0\)
\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{100}\left(a-1\right)+b\cdot b^{100}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot b^{100}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot a^{100}\left(a-1\right)=0\)(theo (2))
\(\Rightarrow a^{100}\left(a-1\right)\left(a-b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-1=0\\a-b=0\end{cases}}\)(do a>0)
\(\Rightarrow a=b=1\)\(\Rightarrow P=1^{2007}+1^{2007}=2\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>a≥1;b≤1
Ta có:
a100(a−1)+b100(b−1)=0
⇒a100(a−1)=b100(b−1)(2)
Lại có:
a101+b101=a102+b102
⇒a102−a101+b102−b101=0
<br class="Apple-interchange-newline"><div id="inner-editor"></div>⇒a100(a−1)+b100(b−1)=0(1)
a100(a−1)+b100(b−1)<0 không đúng với (1)
Không mất tính tổng quát, giả sử
<br class="Apple-interchange-newline"><div id="inner-editor"></div>⇒a100(a−1)=b100(b−1)(2)
Lại có:
a101+b101=a102+b102
⇒a102−a101+b102−b101=0
<br class="Apple-interchange-newline"><div id="inner-editor"></div>⇒a100(a−1)=b
Trên cạnh BC lấy điểm D sao cho CD=CA. Gọi góc CAD, DAB, ADC lần lượt là A1, A2,D1
Ta có
A=A1+A2=D1+A2=B+2.A2
Theo đề bài ta có A=B+2.C
=>C=A2
Dễ dàng chứng minh tam giác ABC đồng dạng tam giác DBA
=>AB/DB=BC/AB
Đặ BC=a ; AB=c ;Ac=b
c/(a−b)=a/c => c2 = a(a−b)
Do các cạnh của tam giác ABC là ba STN liên tiếp và a>b nên a-b=1 hoặc a-b=2
Sau đó giải hai trường hợp đó ra nghiệm thích hợp AB=2 , AC= 3 ; BC=4
A B C M N P O
Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)
Áp dụng bđt Bunhiacopxki, ta có :
\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)
\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)
Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)
A B C O M E F D
a, Theo tính chất 2 tiếp tuyến cắt nhau ta sẽ chứng minh được AM vuông góc với OC, MD vuông góc BD.
Mà \(\widehat{AMB}=90^o\)(góc nội tiếp chắn nửa đường tròn )
Vậy tứ giác OEMF là hình chữ nhật suy ra \(\widehat{COD}=90^O.\)
Trong tam giác vuông OCD, ta áp dụng hệ thức lượng suy ra: \(OM^2=CM.MD\Leftrightarrow R^2=CM.MD\).
Théo tính chât của tiếp tuyến bằng nhau ta có: CM = AC; MD = BD.
Vậy \(AC.BD=R^2.\)
b, Đặt CM = a. R; MD = b.R. Do \(R^2=MC.MD\Rightarrow a.b=1.\)
Áp dụng hệ thức lượng trong tam giác vuông : \(OC^2=CM.CD\Leftrightarrow OC^2=a.R.\left(a.R+b.R\right)\Leftrightarrow OC=R.\sqrt{a\left(a+b\right)}\)
Tương tự \(OD=R.\sqrt{b\left(a+b\right)}.\)
Vậy chu vi tam giác OCD bằng :
\(a.R+b.R+R.\sqrt{a\left(a+b\right)}+R.\sqrt{b\left(a+b\right)}\)
\(=R\left(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}\right)\)ậy
Suy ra chu vi tam giác OCD min khi : \(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}\)min.
Có: \(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}=\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a}+\sqrt{b}\right)\)
\(=\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a+b+2}\right)\)
Do a.b = 1 nên a + b min khi a = b = 1 ( áp dụng BĐT cô - si).
Vây MIN \(\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a+b+2}\right)=\sqrt{2}\left(\sqrt{2}+2\right)=2.\left(\sqrt{2}+1\right)\).
Vậy chu vi tam giác OCD min khi M là trung điểm của CD hay M là trung điểm của cung AB>
\(P_{min}\Delta OCD=2\left(\sqrt{2}+1\right).R\).
qua dễ, lân sau nho hoi nhung bai toan hoc bua ban nhe.