K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

A B C O M E F D

a, Theo tính chất 2 tiếp tuyến cắt nhau ta sẽ chứng minh được AM vuông góc với OC, MD vuông góc BD.
    Mà  \(\widehat{AMB}=90^o\)(góc nội tiếp chắn nửa đường tròn )
    Vậy tứ giác OEMF là hình chữ nhật suy ra \(\widehat{COD}=90^O.\)
    Trong tam giác vuông OCD, ta áp dụng hệ thức lượng suy ra: \(OM^2=CM.MD\Leftrightarrow R^2=CM.MD\).
   Théo tính chât của tiếp tuyến bằng nhau ta có: CM = AC; MD = BD.
    Vậy \(AC.BD=R^2.\)
b, Đặt CM = a. R; MD = b.R. Do \(R^2=MC.MD\Rightarrow a.b=1.\)
Áp dụng hệ thức lượng trong tam giác vuông : \(OC^2=CM.CD\Leftrightarrow OC^2=a.R.\left(a.R+b.R\right)\Leftrightarrow OC=R.\sqrt{a\left(a+b\right)}\)
Tương tự \(OD=R.\sqrt{b\left(a+b\right)}.\)
Vậy chu vi tam giác OCD bằng :
  \(a.R+b.R+R.\sqrt{a\left(a+b\right)}+R.\sqrt{b\left(a+b\right)}\)
\(=R\left(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}\right)\)ậy
Suy ra chu vi tam giác OCD  min khi : \(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}\)min.
Có: \(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}=\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a}+\sqrt{b}\right)\)
                                                                                \(=\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a+b+2}\right)\)
Do a.b = 1 nên a + b min khi a = b = 1 ( áp dụng BĐT cô - si). 
Vây MIN \(\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a+b+2}\right)=\sqrt{2}\left(\sqrt{2}+2\right)=2.\left(\sqrt{2}+1\right)\)
Vậy chu vi tam giác OCD min khi M là trung điểm của CD hay M là trung điểm của cung AB>
\(P_{min}\Delta OCD=2\left(\sqrt{2}+1\right).R\)
    
   

 

15 tháng 10 2016

qua dễ, lân sau nho hoi nhung bai toan hoc bua ban nhe.

4 tháng 10 2016

O C A B N M K M'

a.Gọi M' là giao điểm của CM với đường tròn. Do C thuộc AO nên ta thấy ngay cung MB \(\ge\) cung AM'.

Lại có \(\widehat{CMB}=\frac{sđ\left(BM'\right)}{2}=\frac{180^o-sđ\left(AM'\right)}{2}\)\(\widehat{MBC}=\frac{sđ\left(AM\right)}{2}=\frac{180^o-sđ\left(BM\right)}{2}\)

Vậy nê \(\widehat{CMB}\ge\widehat{MBC}\Rightarrow BC\ge CM.\)

b. Ta thấy tam giác CMN vuông tại C, K là trung điểm MN nên theo định lý về đường trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có: CK = NK = KM.

Lại có do K là trung điểm MN nên \(OK\perp MN.\)

Vậy thì \(CK^2+OK^2=NK^2+OK^2=ON^2=\left(\frac{AB}{2}\right)^2=\frac{AB^2}{4}\) không đổi (đpcm).

2 tháng 10 2016

\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)

\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)

\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)

\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)

2 tháng 10 2016

giúp mình câu khác được ko? câu này mình biết làm òi

2 tháng 10 2016

Ta có : \(\hept{\begin{cases}2x^2+y^2-3xy-4x+3y+2=0\\\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\end{cases}}\)

Xét phương trình đầu : \(2x^2+y^2-3xy-4x+3y+2=0\)

\(\Leftrightarrow\left(2x^2-xy-2x\right)+\left(-2xy+y^2+2y\right)+\left(-2x+y+2\right)=0\)

\(\Leftrightarrow x\left(2x-y-2\right)-y\left(2x-y-2\right)-\left(2x-y-2\right)=0\)

\(\Leftrightarrow\left(2x-y-2\right)\left(x-y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-y-2=0\\x-y-1=0\end{cases}}\)

Từ đó thay y bởi x vào pt còn lại để tìm nghiệm.

2 tháng 10 2016

giúp mình câu khác với

4 tháng 10 2016

ĐKXĐ: z>0

pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)

<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)

<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)

<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)

<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)

<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)

<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)

vậy x=2

4 tháng 10 2016

Một bài làm rất hay !

2 tháng 10 2016

A B C D N M x K H

Hình vẽ không được đẹp cho lắm :))

Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ

Từ A lại kẻ đường thẳng vuông góc với CD tại H.

Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK

=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK

Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)

Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)

\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)

Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)

2 tháng 10 2016

\(a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Rightarrow a^{101}-a^{100}+b^{101}-b^{100}=0\)

\(\Rightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)

  • Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều dương nên:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)>0\) không đúng với (1)

  • Nếu a và b cùng nhỏ hơn 1 thì: a-1 và b-1 đều âm nên:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)< 0\) không đúng với (1)

  • Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1

Không mất tính tổng quát, giả sử \(a\ge1;b\le1\)

Ta có:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\)

\(\Rightarrow a^{100}\left(a-1\right)=b^{100}\left(b-1\right)\left(2\right)\)

Lại có:

\(a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Rightarrow a^{102}-a^{101}+b^{102}-b^{101}=0\)

\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)+b\cdot b^{100}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot b^{100}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot a^{100}\left(a-1\right)=0\)(theo (2))

\(\Rightarrow a^{100}\left(a-1\right)\left(a-b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-1=0\\a-b=0\end{cases}}\)(do a>0)

\(\Rightarrow a=b=1\)\(\Rightarrow P=1^{2007}+1^{2007}=2\)

2 tháng 10 2016

<br class="Apple-interchange-newline"><div id="inner-editor"></div>a1;b1

Ta có:

a100(a1)+b100(b1)=0

a100(a1)=b100(b1)(2)

Lại có:

a101+b101=a102+b102

a102a101+b102b101=0

<br class="Apple-interchange-newline"><div id="inner-editor"></div>a100(a1)+b100(b1)=0(1)

  • Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều dương nên:

a100(a1)+b100(b1)<0 không đúng với (1)

  • Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1

Không mất tính tổng quát, giả sử 

<br class="Apple-interchange-newline"><div id="inner-editor"></div>a100(a1)=b100(b1)(2)

Lại có:

a101+b101=a102+b102

a102a101+b102b101=0

<br class="Apple-interchange-newline"><div id="inner-editor"></div>a100(a1)=b

30 tháng 9 2016

Trên cạnh BC lấy điểm D sao cho CD=CA. Gọi góc CAD, DAB, ADC lần lượt là A1, A2,D1 

Ta có 
A=A1+A2=D1+A2=B+2.A2
Theo đề bài ta có A=B+2.C

=>C=A2
Dễ dàng chứng minh tam giác ABC đồng dạng tam giác DBA
=>AB/DB=BC/AB
Đặ BC=a ; AB=c ;Ac=b 

c/(a−b)=a/c  => c2 = a(a−b)
Do các cạnh của tam giác ABC là ba STN liên tiếp và a>b nên a-b=1 hoặc a-b=2
Sau đó giải hai trường hợp đó ra nghiệm thích hợp AB=2 , AC= 3 ; BC=4

14 tháng 3 2017

CM max tắt 

29 tháng 9 2016

A B C M N P O

Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)

Áp dụng bđt Bunhiacopxki, ta có : 

\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)

\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)

Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)

9 tháng 1 2018

Neu đề bài trên kia là cho >_ 6 thì chứng minh thế nào