với a, b là các số thực thỏa mãn đẳng thức \(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\). hãy tìm giá trị nhỏ nhất của P=\(\sqrt{1+a^4}+\sqrt{1+b^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x,y\ge0\)
\(x\sqrt{x}-8\sqrt{y}=\sqrt{x}+y\sqrt{y}\Rightarrow\left(x-1\right)\sqrt{x}=\left(y+8\right)\sqrt{y}\)
\(\Rightarrow x\ge1\)
\(\Rightarrow\left(y+4\right)\sqrt{y+5}=\left(y+8\right)\sqrt{y}\Rightarrow\left(y+5\right)\left(y^2+8y+16\right)=y\left(y^2+16y+64\right)\)
\(\Rightarrow y^3+13y^2+56y+80=y^3+16y^2+64y\)
\(\Rightarrow-3y^2-8y+80=0\Rightarrow\orbr{\begin{cases}y=4\left(N\right)\\y=-\frac{20}{3}\left(l\right)\end{cases}}\)
Vậy y = 4 và x = 9.
Đặt \(a=\sqrt{x},b=\sqrt{y}\) \(a,b\ge0\) thì hệ đã cho trở thành :
\(\hept{\begin{cases}a^3-8b=a+b^3\\a^2-b^2=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\left(a^2-1\right)=b\left(b^2+8\right)\\a^2-b^2=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\left(b^2+4\right)=b\left(b^2+8\right)\\a^2-1=b^2+4\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a=\frac{b\left(b^2+8\right)}{b^2+4}\\a^2-b^2=5\end{cases}}\)
\(\Rightarrow\frac{b^2\left(b^2+8\right)^2}{\left(b^2+4\right)^2}-b^2=5\)
Lại đặt \(t=b^2,t\ge0\) thì : \(\frac{t\left(t+8\right)^2}{\left(t+4\right)^2}-t=5\Leftrightarrow t\left(t+8\right)^2-t\left(t+4\right)^2=5\left(t+4\right)^2\)
\(\Leftrightarrow\left(t-4\right)\left(3t+20\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=4\left(\text{nhận}\right)\\t=-\frac{20}{3}\left(\text{loại}\right)\end{cases}}\)
Với \(t=4\) thì \(b=2\) (Vì \(b\ge0\)) => \(a=3\)\(\left(a\ge0\right)\)
Vậy \(\hept{\begin{cases}a=3\\b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=9\\y=4\end{cases}}\)
Đặt \(a=x,b=\frac{1}{x}\) thì ta có ab = 1
\(a-b=x-\frac{1}{x}=\frac{x^2-1}{x}=\frac{\left(x-1\right)\left(x+1\right)}{x}\). Vì \(x>1\) nên ta có \(a-b>0\)
\(3\left(a^2-b^2\right)< 2\left(a^3-b^3\right)\)
\(\Leftrightarrow3\left(a-b\right)\left(a+b\right)< 2\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)>\frac{3}{2}\left(a+b\right)\) (chia cả hai vế cho \(a-b>0\))
\(\Leftrightarrow\left(a^2-\frac{3}{2}a+\frac{9}{16}\right)+\left(b^2-\frac{3}{2}b+\frac{9}{16}\right)+\frac{7}{8}>0\)(vì ab = 1)
\(\Leftrightarrow\left(a-\frac{3}{4}\right)^2+\left(b-\frac{3}{4}\right)^2+\frac{7}{8}>0\) (luôn đúng)
Vậy có đpcm.
Hạ sách : Nhân hết ra :)))
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(=x^2+\frac{1}{x^2}+2+y^2+\frac{1}{y^2}+2+x^2y^2+\frac{1}{x^2y^2}+2-\left(xy+\frac{x}{y}+\frac{y}{x}+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}\right)\)
\(=x^2+y^2+\frac{1}{x^2y^2}+x^2y^2+\frac{1}{x^2}+\frac{1}{y^2}+6-\left(x^2y^2+1+x^2+\frac{1}{y^2}+y^2+\frac{1}{x^2}+1+\frac{1}{x^2y^2}\right)\)
\(=6-1-1\)
\(=4\)
\(\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=2\)
\(\Leftrightarrow\frac{1}{a-1}=\left(1-\frac{1}{b-1}\right)+\left(1-\frac{1}{c-1}\right)\)
\(\Leftrightarrow\frac{1}{a-1}=\frac{b-2}{b-1}+\frac{c-2}{c-1}\)
Áp dụng BĐT Cauchy ta có : \(\frac{1}{a-1}=\frac{b-2}{b-1}+\frac{c-2}{c-1}\ge2\sqrt{\frac{b-2}{b-1}.\frac{c-2}{c-1}}\)
Tương tự : \(\frac{1}{b-1}\ge2\sqrt{\frac{a-2}{a-1}.\frac{c-2}{c-1}}\)
\(\frac{1}{c-1}\ge2\sqrt{\frac{b-2}{b-1}.\frac{a-2}{a-1}}\)
Nhân các BĐT theo vế :
\(\frac{1}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\ge\frac{8\left(a-2\right)\left(b-2\right)\left(c-2\right)}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)
\(\Leftrightarrow8\left(a-2\right)\left(b-2\right)\left(c-2\right)\le1\Leftrightarrow\left(a-2\right)\left(b-2\right)\left(c-2\right)\le\frac{1}{8}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{5}{2}\)
Vậy maxH = 1/8 <=> a = b = c = 5/2
\(\left(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\right):\left(\sqrt{6}+\sqrt{2}\right)\)
=\(\left(2\sqrt{3+\sqrt{5-\sqrt{13+2\sqrt{12}}}}\right):\left(\sqrt{6}+\sqrt{2}\right)\)
= \(\left(2\sqrt{3+\sqrt{5-\left|\sqrt{12}+1\right|}}\right):\left(\sqrt{6}+\sqrt{2}\right)\)
=\(\left(2\sqrt{3+\sqrt{5-\sqrt{12}-1}}\right):\left(\sqrt{6}+\sqrt{2}\right)\)
=\(\left(2\sqrt{3+\sqrt{4-2\sqrt{3}}}\right):\left(\sqrt{6}+\sqrt{2}\right)\)
= \(\left(2\sqrt{3+\left|\sqrt{3}-1\right|}\right):\left(\sqrt{6}+\sqrt{2}\right)\)
= \(\left(2\sqrt{3+\sqrt{3}-1}\right):\sqrt{2}\left(\sqrt{3}+1\right)\)
= \(\left(2\sqrt{2-\sqrt{3}}\right):\sqrt{2}\left(\sqrt{3}+1\right)\)
=\(\left(2.\frac{\left|1-\sqrt{3}\right|}{\sqrt{2}}\right):\sqrt{2}\left(\sqrt{3}+1\right)\)
= \(\sqrt{2}\left(\sqrt{3}+1\right):\sqrt{2}\left(\sqrt{3}+1\right)\)
= \(1\)
lời giải ở đây Câu hỏi của Hỏi Làm Gì - Toán lớp 9 - Học toán với OnlineMath
a/ Điều kiện \(\hept{\begin{cases}a\ge0\\a\ne\frac{1}{9}\end{cases}}\) \(\Rightarrow0\le a\ne\frac{1}{9}\)
b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(a-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}\left(1-3\sqrt{a}\right)+\left(\sqrt{a}-2\right)\left(1+3\sqrt{a}\right)+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}:\left(\frac{3a\sqrt{a}-2\sqrt{a}+6-a}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}-6a+\sqrt{a}+3a-2-6\sqrt{a}+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}.\left(\frac{3\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\right)\)
\(=\frac{3a-2\sqrt{a}-1}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
\(=\frac{\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
Hình như đề sai rồi bạn :(
a/ Điều kiện xác định : \(\hept{\begin{cases}a\ge0\\a\ne9\end{cases}\Leftrightarrow}0\le a\ne9\)
b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(1-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}\left(3\sqrt{a}-1\right)+\left(2-\sqrt{a}\right)\left(3\sqrt{a}+1\right)-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}:\frac{\sqrt{a}+5}{3\sqrt{a}-1}\)
\(=\frac{6a-2\sqrt{a}+6\sqrt{a}+2-3a-\sqrt{a}-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}.\frac{3\sqrt{a}-1}{\sqrt{a}+5}\)
\(=\frac{3a-2\sqrt{a}-1}{3\sqrt{a}+1}.\frac{1}{\sqrt{a}+5}\)
\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(3\sqrt{a}+1\right)\left(\sqrt{a}+5\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+5}\)
c/ \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\) thay vào M được
\(\frac{\sqrt{5}-2-1}{\sqrt{5}-2+5}=\frac{\sqrt{5}-3}{\sqrt{5}+3}=\frac{-7+3\sqrt{5}}{2}\)
d/ \(M=\frac{\sqrt{a}-1}{\sqrt{a}+5}=\frac{\sqrt{a}+5-6}{\sqrt{a}+5}=1-\frac{6}{\sqrt{a}+5}\)
Với mọi \(0\le a\ne9\) thì ta luôn có \(\sqrt{a}+5\ge5\Leftrightarrow\frac{6}{\sqrt{a}+5}\le\frac{6}{5}\Leftrightarrow-\frac{6}{\sqrt{a}+5}\ge-\frac{6}{5}\Leftrightarrow1-\frac{6}{\sqrt{a}+5}\ge1-\frac{6}{5}\)
\(\Rightarrow M\ge-\frac{1}{5}\)
Đẳng thức xảy ra khi a = 0
Vậy giá trị nhỏ nhất của M bằng \(-\frac{1}{5}\) khi a = 0
\(pt\Leftrightarrow\left(\frac{4}{x^2}+\frac{x^2}{4-x^2}\right)+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(\Leftrightarrow\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)^2-1+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
Đặt \(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}=t\)pt thành
\(t^2-1+\frac{5}{2}t+2=0\)\(\Rightarrow\orbr{\begin{cases}t=-2\\t=-\frac{1}{2}\end{cases}}\)(loại)
-->PT vô nghiệm
Ta có : \(\frac{9}{4}=\left(1+a\right)\left(1+b\right)\le\frac{1}{4}\left(a+b+2\right)^2\)
\(\Leftrightarrow\left(a+b+2\right)^2\ge9\Leftrightarrow a+b+2\ge3\Leftrightarrow a+b\ge1\)
Áp dụng BĐT Mincopxki , ta có : \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1^2+1^2\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}\left(a+b\right)^4}\ge\sqrt{\frac{17}{4}}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Vậy minP = \(\frac{\sqrt{17}}{2}\Leftrightarrow a=b=\frac{1}{2}\)
\(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)
\(\Leftrightarrow1+a+b+ab=\frac{9}{4}\Leftrightarrow a+b+ab=\frac{5}{4}\)
Áp dụng Bđt Cô si ta có: \(a^2+b^2\ge2ab\)
\(2\left(a^2+\frac{1}{4}\right)\ge2a;2\left(b^2+\frac{1}{4}\right)\ge2b\)
\(\Rightarrow3\left(a^2+b^2\right)+1\ge2\left(a+b+ab\right)=\frac{5}{2}\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Áp dụng Bđt Bunhiacopski ta cũng có:
\(P\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}}=\frac{\sqrt{17}}{2}\)
Dấu = khi \(x=y=\frac{1}{2}\)