K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

A B C D K H I O M

Gọi O là giao điểm của hai đường chéo AC và BD. Từ O kẻ OM song song với CI , suy ra OM cũng song song với KD và BH

Ta có \(\hept{\begin{cases}OA=OC\\OM\text{//}CI\end{cases}\Rightarrow}\)OM là đường trung bình tam giác ACI => \(CI=2OM\left(1\right)\)

Lại có \(\hept{\begin{cases}DK\text{//}OM\text{//}BH\\OD=OB\end{cases}\Rightarrow}\)OM là đường trung bình của hình thang BHKD

\(\Rightarrow KD+BH=2OM\left(2\right)\)

Từ (1) và (2) suy ra \(BH+CI+DK=4OM\le4OA\left(\text{hằng số}\right)\)

Vậy \(BH+CI+KD\) đạt giá trị lớn nhất bằng 4OA khi \(\hept{\begin{cases}OM=OA\\OM\perp d\end{cases}}\Rightarrow\)đường thẳng d vuông góc với CA tại A

9 tháng 10 2016

h di ma 

6 tháng 10 2016

???ng tr�n c: ???ng tr�n qua B_1 v?i t�m O ?o?n th?ng h: ?o?n th?ng [A, B] ?o?n th?ng i: ?o?n th?ng [A, C] ?o?n th?ng k: ?o?n th?ng [D, E] ?o?n th?ng l: ?o?n th?ng [O, D] ?o?n th?ng m: ?o?n th?ng [O, E] ?o?n th?ng n: ?o?n th?ng [B, C] ?o?n th?ng p: ?o?n th?ng [B, O] ?o?n th?ng q: ?o?n th?ng [C, O] ?o?n th?ng r: ?o?n th?ng [D, K] ?o?n th?ng s: ?o?n th?ng [I, E] ?o?n th?ng t: ?o?n th?ng [O, M] O = (0.76, 0.64) O = (0.76, 0.64) O = (0.76, 0.64) ?i?m B: ?i?m tr�n c ?i?m B: ?i?m tr�n c ?i?m B: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m A: Giao ?i?m c?a f, g ?i?m A: Giao ?i?m c?a f, g ?i?m A: Giao ?i?m c?a f, g ?i?m M: ?i?m tr�n c ?i?m M: ?i?m tr�n c ?i?m M: ?i?m tr�n c ?i?m D: Giao ?i?m c?a j, h ?i?m D: Giao ?i?m c?a j, h ?i?m D: Giao ?i?m c?a j, h ?i?m E: Giao ?i?m c?a j, i ?i?m E: Giao ?i?m c?a j, i ?i?m E: Giao ?i?m c?a j, i ?i?m I: Giao ?i?m c?a l, n ?i?m I: Giao ?i?m c?a l, n ?i?m I: Giao ?i?m c?a l, n ?i?m K: Giao ?i?m c?a m, n ?i?m K: Giao ?i?m c?a m, n ?i?m K: Giao ?i?m c?a m, n

a. Ta thấy \(\widehat{CBA}=\frac{sđ\left(BC\right)}{2}\) (Kí hiệu số đo cùng BC là sđ(BC) )

Lại có \(\widehat{DOC}=\widehat{DOM}+\widehat{MOE}=\frac{\widehat{BOM}}{2}+\widehat{\frac{MOC}{2}}=\frac{\widehat{BOC}}{2}=\frac{sđ\left(BC\right)}{2}\)

Vậy \(\widehat{CBA}=\widehat{DOE}\)

Lại có \(\widehat{BDI}=\widehat{ODE}\) (Do BD và DM là hai tiếp tuyến)

Vậy nên \(\Delta BDI\sim\Delta ODE\left(g-g\right)\)

\(\Rightarrow\frac{DI}{DE}=\frac{BD}{OD}\Rightarrow DB.DE=DI.DO\left(đpcm\right)\)

b. Ta thấy do \(\Delta BDI\sim\Delta ODE\left(cmt\right)\Rightarrow\widehat{BID}=\widehat{OED}=\widehat{OEC}\)

\(\Rightarrow\)OIEC là tứ giác nội tiếp \(\Rightarrow\widehat{OIE}=\widehat{OCE}=90^o\Rightarrow EI\perp DO.\)

Tương tự \(DK\perp DE.\)

Xét tam giác ODE có OM, DK , EI là các đường cao nên chúng đồng quy.

6 tháng 10 2016

la sao

8 tháng 10 2016

Ta có:

x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)

  = \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)

  = \(\frac{1}{2}\)(\(\sqrt{2}\)-1)

=> 2x = \(\sqrt{2}\)-1

=> (2x)2= ( \(\sqrt{2}\)-1)2

=> 4x2= 2-2\(\sqrt{2}\)+1

=> 4x2= -2( \(\sqrt{2}\)-1)+1

=> 4x2= -4x +1 => 4x2+4x-1=0

Lại có:

A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19

   = [  x3( 4x2+4x-1) +1]19

   =1

    A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3

       = (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3

       = 23=8

  A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)

     = \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)

Cộng 3 số vào ta được A

6 tháng 10 2016

no biet

5 tháng 10 2016

Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1

Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)

<=>  \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

<=>    \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

<=>  \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)

<=>  \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)

Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm

5 tháng 10 2016

Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)

Vậy pt có 1 nghiệm x= 1.

Ta giải pt bậc ba theo công thức Cardano:

\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)

Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)

\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)

Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)

Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)

Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.

Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.

\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)

Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.

4 tháng 10 2016

Đặt A = a2018+a2017+1

Do a là số nguyên dương nên ta xét các TH

Nếu a=1 thì A=a2018+a2017+1=3(là SNT) chọn

Nếu a>1 ta có

\(A=\left(a^{2018}-a^2\right)+\left(a^{2017}-a\right)+\left(a^2+a+1\right)\)

\(A=\left(a^{2016}-1\right)\left(a^2+a\right)+\left(a^2+a+1\right)\)(1)

Ta thấy: \(a^{2016}-1=\left(a^3\right)^{672}-1\)luôn chia hết cho a3-1( áp dụng tính chất an-bn chia hết cho a-b với a khác b)

Mà a>1 => a3-1 #0 và a3-1=(a-1)(a2+a+1)

Vì vậy a2016-1 chia hết cho a2+a+1(2)

Từ (1) và (2) => A chia hết cho (a2+a+1)

Mà a>1 => \(\hept{\begin{cases}A>a^2+a+1\\a^2+a+1#1\end{cases}}\)

=> A là hợp số

Vậy a=1 thì A là số nguyên tố

5 tháng 10 2016

Cảm ơn

4 tháng 10 2016

ui khó quá mình không biết đâu

4 tháng 10 2016

Điều kiện xác định: \(x,y\ge1.\)
PT\(\Leftrightarrow2x\sqrt{y-1}+4y\sqrt{x-1}-3xy=0\)
    \(\Leftrightarrow2x\sqrt{y-1}-xy+4y\sqrt{x-1}-2xy\)
    \(\Leftrightarrow x\left(2\sqrt{y-1}-y\right)+2y\left(2\sqrt{x-1}-x\right)=0\)
    \(\Leftrightarrow-x\left(y-1-2\sqrt{y-1}+1\right)-2y\left(x-1-2\sqrt{x-1}+1\right)=0\)
    \(\Leftrightarrow-x\left(\sqrt{y-1}-1\right)^2-2y\left(\sqrt{x-1}-1\right)^2=0\)
Do \(x,y\ge1\)nên \(-x\left(\sqrt{x-1}-1\right)^2\le0,-2y \left(\sqrt{y-1}-1\right)^2\le0\)
Vậy: \(-x\left(\sqrt{y-1}-1\right)^2-2y\left(\sqrt{x-1}-1\right)^2=0\)
Khi : \(\hept{\begin{cases}-x\left(\sqrt{x-1}-1\right)^2=0\\-y\left(\sqrt{y-1}-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}.}}\)


   

4 tháng 10 2016

Cảm ơn 

4 tháng 10 2016

Điều kiện xác định : \(\hept{\begin{cases}x\ge\frac{1}{2}\\y\ge1\\z\ge\frac{3}{4}\end{cases}}\)

Ta có : \(\sqrt{2x-1}+2\sqrt{2y-2}+3\sqrt{4z-3}=x+y+2z+4\)

\(\Leftrightarrow2\sqrt{2x-1}+4\sqrt{2y-2}+6\sqrt{4z-3}=2x+2y+4z+8\)

\(\Leftrightarrow\left(2x-1-2\sqrt{2x-1}+1\right)+\left(2y-2-4\sqrt{2y-2}+4\right)+\left(4z-3+6\sqrt{4z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2=0\)

Mà ta luôn có \(\left(\sqrt{2x-1}-1\right)^2\ge0\)\(\left(\sqrt{2y-2}-2\right)^2\ge0\)\(\left(\sqrt{4z-3}-3\right)^2\ge0\)

\(\Rightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{2x-1}-1=0\\\sqrt{2y-2}-2=0\\\sqrt{4z-3}-3=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=3\end{cases}}\) (TMDK)

Vậy (x;y;z) = (1;3;3) 

4 tháng 10 2016

1:3:3