Cho phương trình: \(x^4+ax^3+bx^2+cx+1=0\) có nghiệm. Tìm min P=\(a^2+b^2+c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}x^2\left(4y+1\right)-2y=-3\\x^2\left(x^2-12y\right)+4y^2=9\end{cases}}\)
Ta có y = - 0,25 không phải là nghiệm của hệ nên
\(\Leftrightarrow\hept{\begin{cases}x^2=\frac{2y-3}{4y+1}\\\frac{2y-3}{4y+1}\left(\frac{2y-3}{4y+1}-12y\right)+4y^2=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=\frac{2y-3}{4y+1}\left(1\right)\\4y^4-4y^3-y^2-3=0\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow y\left(2y-3\right)\left(2y^2+y+1\right)=0\)
Ta đễ thấy 2y2 + y + 1 > 0
Với y = 0 thì không tìm được x
Với y = \(\frac{3}{2}\)thì x = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
Ý tưởng: Đặt \(xy=\frac{1}{k}\) hay \(y=\frac{1}{kx}\).
Ta có \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\Rightarrow2x^2+\frac{1}{x^2}+4k^2x^2=4\)
Suy ra \(\left(4k^2+2\right)x^4-4x^2+1=0\)
Đặt \(X=x^2\). Giả thiết trở thành \(\left(4k^2+2\right)X^2-4X+1=0\) (1), trong đó \(X\) dương.
Do \(X\) tồn tại (theo đề bài) nên có thể coi (1) là phương trình tham số \(k\), và phải có nghiệm dương.
\(\Delta'=2^2-\left(4k^2+2\right)=2-4k^2\)
Nhận xét: Nếu (1) có 2 nghiệm (tính cả nghiệm kép) thì tổng và tích của chúng đều dương nên 2 nghiệm là dương.
Vậy chỉ cần \(\Delta'\ge0\), tức là \(-\sqrt{2}\le\frac{1}{k}\le\sqrt{2}\)
Vậy min\(M=2016-\sqrt{2}\)(đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=2\),
max\(M=2016+\sqrt{2}\) (đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B M H Sửa đề là đường kính AB
Ta có: \(MA.MB\le\frac{MA^2+MB^2}{2}=\frac{AB^2}{2}=\frac{4R^2}{2}=2R^2\)
Ta có
\(\frac{1}{MA^2}+\frac{1}{MB^2}=\frac{MA^2+MB^2}{MA^2.MB^2}=\frac{AB^2}{MA^2.MB^2}=\frac{4R^2}{MA^2.MB^2}\)
\(\ge\frac{4R^2}{\left(2R^2\right)^2}=\frac{4R^2}{4R^4}=\frac{1}{R^2}\)
Dấu = xảy ra khi MA = MB hay M là điểm chính giữa cung AB
Mình nhớ không nhầm thì theo hệ thức lượng trong tam giác vuông ta có \(\frac{1}{MA^2}+\frac{1}{MB^2}=\frac{1}{MH^2}\ge\frac{1}{R^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Điều kiện: \(\hept{\begin{cases}x\ne0\\2-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\-\sqrt{2}< x< \sqrt{2}\end{cases}}}\)
Ta có
\(\frac{1}{x}+\frac{1}{\sqrt{2-x^2}}=2\)
\(\Leftrightarrow\frac{1}{\sqrt{2-x^2}}=2-\frac{1}{x}\)(x < 0 hoặc \(x\ge0,5\))
\(\Leftrightarrow\frac{1}{2-x^2}=4-\frac{4}{x}+\frac{1}{x^2}\)
\(\Leftrightarrow2x^4-2x^3-3x^2+4x-1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^2+2x-1\right)=0\)
Với \(x-1=0\Leftrightarrow x=1\)
Với \(2x^2+2x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{2}-\frac{1}{2}\left(l\right)\\x=-\frac{\sqrt{3}}{2}-\frac{1}{2}\end{cases}}\)
Điều kiện bạn tự làm nhé
\(\frac{1}{x}+\frac{1}{\sqrt{2-x^2}}=2\)
\(\Leftrightarrow\frac{1}{\sqrt{2-x^2}}=2-\frac{1}{x}\left(x\ge\frac{1}{2}\right)\)
\(\Leftrightarrow\frac{1}{2-x^2}=4-\frac{4}{x}+\frac{1}{x^2}\)
\(\Leftrightarrow4x^4-4x^3-6x^2+8x-2=0\)
\(\Leftrightarrow2x^4-2x^3-3x^2+4x-1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x+2x-1\right)=0\)
Tới đây thì đơn giản rồi bạn làm tiếp nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D O r H K
Từ O kẻ OH và OK vuông góc với BD . Nối OC , cắt AD tại K => OC vuông góc với AD (cung AC và CD bằng nhau)
Dễ thấy OHDK là hình chữ nhật => \(OK=DH=\frac{1}{2}BD=3\left(cm\right)\)
và \(DK=OH=\sqrt{OB^2-3^2}=\sqrt{r^2-9}\) (1)
Mặt khác, ta lại có \(KD=\sqrt{CD^2-KC^2}=\sqrt{20-\left(r-3\right)^2}\) (2)
Từ (1) và (2) ta có : \(\sqrt{r^2-9}=\sqrt{20-\left(r-3\right)^2}\Leftrightarrow\orbr{\begin{cases}r=5\left(n\right)\\r=-2\left(l\right)\end{cases}}\)
Vậy bán kính của dường tròn là 5 cm.
O A B D C
Ta có
\(CB^2=CD^2+DB^2-2.CD.DB.\cos\left(\widehat{CDB}\right)\)
\(=20+36-2.2\sqrt{5}.6.\cos\left(\pi-\widehat{CAB}\right)\)
\(=56+\frac{24\sqrt{5}.2\sqrt{5}}{2R}=56+\frac{120}{R}\left(1\right)\)
Ta lại có
\(CB^2+AC^2=AD^2+DB^2=4R^2\)
\(\Leftrightarrow56+\frac{120}{R}+20=4R^2\)
\(\Leftrightarrow4R^2-\frac{120}{R}-76=0\)
\(\Leftrightarrow R^3-19R-30=0\)
\(\Leftrightarrow\left(R-5\right)\left(R+2\right)\left(R+3\right)=0\)
\(\Leftrightarrow R=5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
de om chung minh thoi chu gi
* vi diem i nam giua 2 diem con lai
* vi diem i cach deu 2 diem h va k
![](https://rs.olm.vn/images/avt/0.png?1311)
Với a = b = c = 1 thì
\(A=\frac{1}{1+1+1}+\frac{1}{1+1+1}+\frac{1}{1+1+1}=1\)
Với \(\hept{\begin{cases}a=b=2\\c=0,25\end{cases}}\)thì
\(A=\frac{2^3}{2+2+2^3.0,25}+\frac{2^3}{2+0,25+0,25^3.2}+\frac{0,25^3}{0,25+2+2^3.2}\approx4,841\)
Vậy A không phải là 1 hằng số với điều kiện đã cho nên đề sai. Xem lại đề nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
Oh my!!! Cuối cùng cũng ra!!!
Với mọi \(x\) ta luôn có \(ax^3+bx^2+cx=-1-x^4\).
Áp dụng BĐT Cauchy-Schwarz dạng phân thức ta có:
\(\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\ge\left(ax^3+bx^2+cx\right)^2\)
Hay \(P\ge\frac{\left(x^4+1\right)^2}{x^6+x^4+x^2}\).
Đặt \(y=x^2\), ta tìm min\(\frac{y^4+2y^2+1}{y^3+y^2+y}\).
Ta sẽ CM \(\frac{y^4+2y^2+1}{y^3+y^2+y}\ge\frac{4}{3}\) với mọi \(y\) dương.
Biến đổi tương đương ta có: \(\left(y-1\right)^2\left(3y^2+2y+3\right)\ge0\) (đúng).
Vậy \(P\ge\frac{4}{3}\). Đẳng thức xảy ra khi \(a=b=c=-\frac{2}{3}\).
(Bất đẳng thức kiểu này quá khó!)
(x) = x^4 + ax^3 + bx^2 + cx - 1 = 0
lim f(x) (x --> -∞, x --> +∞) = lim x^4*(1 + a/x + b/x^2 + c/x^3 - 1/x^4) = + ∞
=> tồn tại x1 và x2 thỏa mãn x1 < 0 < x2 sao cho f(x1) > 0, f(x2) > 0
ta có f(0) = -1 < 0 => f(x1)*f(0) < 0, f(0)*f(x2) < 0
=> trong (x1, 0) tồn tại x3 và trong (0, x2) tồn tại x4 rằng f(x3) = f(x4) = 0