K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

Ta có : \(a\left(x-b\right)\left(x-c\right)+b\left(x-c\right)\left(x-a\right)+c\left(x-a\right)\left(x-b\right)=0\)

\(\Leftrightarrow a\left[x^2-x\left(b+c\right)+bc\right]+b\left[x^2-x\left(c+a\right)+ac\right]+c\left[x^2-x\left(a+b\right)+ab\right]=0\)

\(\Leftrightarrow x^2\left(a+b+c\right)-2x\left(ab+ac+bc\right)+3abc=0\) (1)

Xét với a + b + c \(\ne\) 0 thì phương trình (1) có biệt số \(\Delta'=\left(ab+bc+ac\right)^2-3.\left(a+b+c\right).abc\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-3abc\left(a+b+c\right)\)

\(=a^2b^2+b^2c^2+c^2a^2-abc\left(a+b+c\right)\)

\(=\frac{a^2\left(b^2-2bc+c^2\right)+b^2\left(c^2-2ca+a^2\right)+c^2\left(a^2-2ab+b^2\right)}{2}\)

\(=\frac{a^2\left(b-c\right)^2+b^2\left(c-a\right)^2+c^2\left(a-b\right)^2}{2}\ge0\)

=> Phương trình (1) luôn có nghiệm trong trường hợp này.

Vậy phương trình ban đầu luôn có nghiệm với mọi a,b,c thỏa mãn \(a+b+c\ne0\)

1 tháng 8 2019

Ta có : a (xb)(xc)+b(xc)(xa)+c(xa)(xb)=0

óa[x2x(b+c)+bc]+b[x2x(c+a)+ac]+c[x2x(a+b)+ab]=0

óx2(a+b+c)−2x(ab+ac+bc)+3abc=0 (1)

Xét với a + b + c≠ 0 thì phương trình (1) có biệt số

Δ'=(ab+bc+ac)2−3.(a+b+c).abc

=a2b2+b2c2+c2a2+2abc(a+b+c)−3abc(a+b+c)=a2b2+b2c2+c2a2abc(a+b+c)

=a2(b2−2bc+c2)+b2(c2−2ca+a2)+c2(a2−2ab+b2)2 

a2(bc)2+b2(ca)2+c2(ab)22 ≥0

=> Phương trình (1) luôn có nghiệm trong trường hợp này.

Vậy phương trình ban đầu luôn có nghiệm với mọi a,b,c thỏa mãn

14 tháng 11 2016

Ta có

\(x^5-9x-27=0\)

\(\Leftrightarrow\left(x^5+3x^4+3x^3\right)+\left(-3x^4-9x^3-9x^2\right)+\left(6x^3+18x^2+18x\right)+\left(-9x^2-27x-27\right)=0\)

\(\Leftrightarrow\left(x^2+3x+3\right)\left(x^3-3x^2+6x-9\right)=0\)

Tới đây thì đơn giản rồi. Lấy máy tính mà bấm nhé

14 tháng 11 2016

nè bạn alibaba nguyễn ..cậu tìm kiểu j ra nhân tử là x^2+3x+3 vậy??

14 tháng 11 2016

Ta có: \(x\left(x+1\right)=\frac{\sqrt{5}-1}{2}.\frac{\sqrt{5}+1}{2}=1\)

Ta có: x5 + x4 - x3 + 1 = (x5 + x4) - x3 + 1 = x3 - x3 + 1 = 1

x2 + x - 3 = x(x + 1) - 3 = - 2

x5 + x4 - x3 - 22016 = - 22016

Từ đó ta có

\(=1^{2017}+\frac{\left(-2\right)^{2016}}{-2^{2016}}=1-1=0\)

17 tháng 11 2016

Ta có: \(x^2\text{+}x-1=...=0 \)

\(=>x^3\left(x^2\text{+}x-1\right)=0\)

=> \(x^5\text{+}x^4-x^3=0\)

=> A=\(\left(\left(x^5\text{+}x^4-x^3\right)\text{+}1\right)^{2017}\text{+}\frac{\left(\left(x^2\text{+}x-1\right)-2\right)^{2016}}{\left(x^5\text{+}x^4-x^3\right)-2^{2016}}\)

=\(1^{2017}\text{+}\frac{2^{2016}}{-2^{2016}}=1-1=0\)

14 tháng 11 2016

Bình phương 2 vế được

x4 - 2x3 + 3x2 - 14x + 5 = 0

<=> (x4 + x3 + 5x2) + (- 3x3 - 3x2 - 15x) + (x2 + x + 5) = 0

<=> (x2 + x + 5)(x2 - 3x + 1) = 0

Tới đây thì đơn giản rồi bạn làm tiếp nhé

15 tháng 11 2016

ai làm bài này đi

15 tháng 11 2016

ko biết làm

14 tháng 11 2016

M A B C D I J O' O  

1/ Theo tính chất các tiếp tuyến cắt nhau ta có : AC = CM ; BD = MD

Suy ra : \(AC.BD=MC.MD=OM^2=R^2\) (OM là đường cao tam giác vuông COD)

2/ Vì C và D là giao điểm của các tiếp tuyến cắt nhau nên theo tính chất ta có

 OC vuông góc với AM và OD vuông góc với BM. Mà góc AMB chắn nửa cung tròn 

đường kính AB nên có số đo bằng 90 độ hay AM vuông góc với BM.

Từ đó ta có \(\hept{\begin{cases}OI\text{//}MB\\OA=OB\end{cases}}\) và \(\hept{\begin{cases}OJ\text{//}MA\\OA=OB\end{cases}}\)

Suy ra OI và OJ là các đường trung bình của tam giác AMB => IA = IM và JB = JM

Lại tiếp tục suy ra được IJ là đường trung bình của tam giác AMB => IJ // AB

3/ 

Gọi O' là đường tròn ngoại tiếp tứ giác CIJD và d khoảng cách từ O' đến CD. 

Khi đó ta nhận thấy rằng nếu CD chuyển động nhưng vẫn tiếp xúc với (O) thì d không đổi.

Theo định lí Pytago thì : \(O'D=\sqrt{d^2+\left(\frac{CD}{2}\right)^2}\)

Mà d không đổi, do vậy min O'D <=> min CD.

Ta sẽ tìm giá trị nhỏ nhất của CD. 

Ta có : \(CD^2=\left(MC+MD\right)^2\ge4MC.MD=4OM^2\)

\(\Rightarrow CD\ge2OM\) (hằng số). Để điều này xảy ra thì M là điểm chính giữa cung AB.

Vậy M là điểm chính giữa cung AB thì (CIJD) có bán kính nhỏ nhất.

14 tháng 11 2016

Nếu không ai giải thì vẽ cho mình cái hình mình giải giúp cho. Nhớ vẽ luôn cả tâm đường tròn ngoại tiếp tứ giác CIJD nhé

13 tháng 11 2016

a/ Tọa độ A là nghiệm của hệ

\(\hept{\begin{cases}y=-2x+3\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1,5\\y=0\end{cases}}\)

=> A(1,5; 0)

Tọa độ B là nghiệm của hệ

\(\hept{\begin{cases}x=0\\y=-2x+3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}\)

=> B(0; 3)

Khoản cách từ O(0; 0) đến d

\(=\frac{\left|0-2×0-3\right|}{\sqrt{1^2+2^2}}=\frac{3}{\sqrt{5}}\)

b/ Khoản cách từ C(0; - 2) đến d là

\(d\left(C,d\right)=\frac{\left|-2+2×0-3\right|}{\sqrt{1^2+2^2}}=\frac{5}{\sqrt{5}}=\sqrt{5}\)

13 tháng 11 2016

A/ TỌA ĐỘ A THỎA \(\hept{\begin{cases}Y=0\\Y=-2X+3\end{cases}}\)\(\Rightarrow\Rightarrow A\left(\frac{3}{2},O\right)\)

TỌA ĐỘ B THỎA,\(\hept{\begin{cases}Y=-2X+3\\X=0\end{cases}}\)\(\Rightarrow B\left(0,3\right)\)

GOI H LA HINH CHIEU CUA O LEN (d) ap dung he thuc luong trong tam giac vuongOAB cho

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Leftrightarrow\frac{1}{OH^2}=\frac{1}{\left(\frac{3}{2}\right)^2}+\frac{1}{3^2}\Rightarrow AH=\frac{3}{\sqrt{5}}\)

B/GỌI K LÀ HÌNH CHIẾU CỦA C LÊN (d) ta co\(\frac{OH}{CK}=\frac{OB}{OC}=\frac{3}{5}\Rightarrow CK=\frac{5}{3}OH=\sqrt{5}\)

(....20 NHA)

14 tháng 11 2016

Phút thứ 1 : Bóng đèn số \(x_1=0\) sáng

Phút thứ 2 : Bóng đèn số \(x_2=\left(216x_1+19\right)mod56=19\)sáng.

Phút thứ 3 : Bóng đèn số \(x_3=\left(216x_2+19\right)mod56=35\) sáng.

Phút thứ 4 : Bóng đèn số \(x_4=\left(216x_3+19\right)mod56=19\) sáng.

.............................................................................................................

Tới đây ta nhận thấy rằng từ phút thứ hai trở đi, chỉ có bóng đèn số 35 và 19 sáng. 

Hay nói cách khác, số chu kì lặp là 2. Các phút chẵn thì bóng đèn 19 sáng, còn các phút

lẻ thì bóng đèn số 35 sáng.

Như vậy ở phút thứ 2018 thì bóng đèn số 19 đang sáng.

5 tháng 7 2021

thứ 19

13 tháng 11 2016

mẫu:\(\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2016}\)

=\(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\)

=\(1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)

=\(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{2016.2017}\right)\)

=\(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)

=\(1+2\left(\frac{1}{2}-\frac{1}{2017}\right)\)

=\(1+1-\frac{2}{2017}\)

=\(\frac{4032}{2017}\)

=>Biểu thức:\(\frac{4032}{\frac{4032}{2017}}\)

=\(2017\)

14 tháng 11 2016

Ta có công thức tổng quát với n tự nhiên là

\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow\frac{1}{1+2+...+n}=\frac{2}{n\left(n+1\right)}\)

Áp dụng công thức vào bài toán ta được

\(\frac{2.2016}{\frac{1}{1}+\frac{1}{1+2}+..+\frac{1}{1+2+...+2016}}=\frac{2.2016}{\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{2016.2017}}\)

\(=\frac{2.2016}{2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\right)}=\frac{2.2016}{2\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\right)}\)

\(=\frac{2.2016}{2\left(1-\frac{1}{2017}\right)}=\frac{2.2016}{\frac{2.2016}{2017}}=2017\)

14 tháng 11 2016

?o?n th?ng j_1: ?o?n th?ng [A, B] ?o?n th?ng k_1: ?o?n th?ng [B, C] ?o?n th?ng l_1: ?o?n th?ng [A, C] ?o?n th?ng r_1: ?o?n th?ng [A, M] ?o?n th?ng s_1: ?o?n th?ng [A, D] ?o?n th?ng t_1: ?o?n th?ng [A, N] ?o?n th?ng e_1: ?o?n th?ng [E, M] ?o?n th?ng f_2: ?o?n th?ng [P, N] ?o?n th?ng g_2: ?o?n th?ng [F, M] ?o?n th?ng h_2: ?o?n th?ng [Q, N] ?o?n th?ng i_2: ?o?n th?ng [P, Q] ?o?n th?ng j_2: ?o?n th?ng [F, E] ?o?n th?ng k_2: ?o?n th?ng [P, F] A = (-13.33, -6.93) A = (-13.33, -6.93) A = (-13.33, -6.93) B = (-16.03, -13.14) B = (-16.03, -13.14) B = (-16.03, -13.14) C = (-5.8, -13.23) C = (-5.8, -13.23) C = (-5.8, -13.23) ?i?m D: Giao ?i?m c?a m_1, k_1 ?i?m D: Giao ?i?m c?a m_1, k_1 ?i?m D: Giao ?i?m c?a m_1, k_1 ?i?m M: ?i?m tr�n k_1 ?i?m M: ?i?m tr�n k_1 ?i?m M: ?i?m tr�n k_1 ?i?m N: Giao ?i?m c?a k_1, q_1 ?i?m N: Giao ?i?m c?a k_1, q_1 ?i?m N: Giao ?i?m c?a k_1, q_1 ?i?m E: Giao ?i?m c?a a_1, j_1 ?i?m E: Giao ?i?m c?a a_1, j_1 ?i?m E: Giao ?i?m c?a a_1, j_1 ?i?m P: Giao ?i?m c?a c_1, j_1 ?i?m P: Giao ?i?m c?a c_1, j_1 ?i?m P: Giao ?i?m c?a c_1, j_1 ?i?m F: Giao ?i?m c?a b_1, l_1 ?i?m F: Giao ?i?m c?a b_1, l_1 ?i?m F: Giao ?i?m c?a b_1, l_1 ?i?m Q: Giao ?i?m c?a d_1, l_1 ?i?m Q: Giao ?i?m c?a d_1, l_1 ?i?m Q: Giao ?i?m c?a d_1, l_1 TenVanBan1 = "S_1" TenVanBan1 = "S_1" TenVanBan2 = "S_2" TenVanBan2 = "S_2" I J

a. Ta có AD là phân giác góc BAC; AD cũng là phân giác góc MAN nên \(\widehat{BAM}=\widehat{CAN.}\)

Vậy thì \(\widehat{PAN}=\widehat{FAM}\) (Vì cùng bằng \(\widehat{BAC}-\widehat{NAC}=\widehat{BAC}-\widehat{MAB}\) )

Từ đó suy ra \(\Delta PAN\sim\Delta FAM\left(g-g\right)\Rightarrow\widehat{PNA}=\widehat{FMA}\left(1\right)\)

Ta thấy \(\widehat{APN}=\widehat{AQN}=90^o\Rightarrow\)P, A,Q, N cùng thuộc một đường tròn. Vậy \(\widehat{PNA}=\widehat{PQA}\left(2\right)\)

Tương tự \(\widehat{FMA}=\widehat{FEA}\left(3\right)\)

Từ (1); (2); (3) suy ra \(\widehat{PQF}=\widehat{PEF}\) hay tứ giác PEQF là tứ giác nội tiếp. Vậy P, E, Q, F cùng thuộc một đường tròn.

b. Gọi I, J là hình chiếu của D trên AB và AC. Khi đó ta thấy ngay DI = DJ.

Ta có: \(\frac{NC}{DC}=\frac{NQ}{DJ};\frac{BM}{BD}=\frac{EM}{DI}\Rightarrow\frac{NC}{CD}.\frac{BD}{BM}=\frac{NQ}{EM}\Rightarrow\frac{CN}{BM}.\frac{BD}{CD}=\frac{NQ}{EM}\) 

\(\Rightarrow\frac{CN}{BM}.\frac{AB}{AC}=\frac{NQ}{EM}\)

\(\frac{BD}{BN}=\frac{DI}{NP};\frac{CD}{CM}=\frac{DJ}{MF}\Rightarrow\frac{CM}{BN}.\frac{AB}{AC}=\frac{MF}{NP}\)

\(\Rightarrow\frac{AB^2.CM.CN}{AC^2.BM.BN}=\frac{NQ}{EM}.\frac{MF}{NP}\)

Lại có \(\Delta PNQ\sim\Delta FME\left(g-g\right)\Rightarrow\frac{NQ}{ME}=\frac{PN}{MF}\Rightarrow\frac{NQ}{ME}.\frac{MF}{PN}=1\)

\(\Rightarrow\frac{AB^2.CM.CN}{AC^2.BM.BN}=1\Rightarrow\frac{AB^2}{AC^2}=\frac{BM.BN}{CM.CN}.\)