Cho tam giác ABC, đường thẳng d cắt AC và BC tại E và F. CMR: đường d đi qua tâm đường tròn nội tiếp tam giác ABC.
Chứng minh rằng: \(BC\frac{AE}{CE}+AC\frac{BF}{CF}=AB\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[4]{x}+\sqrt[4]{17-x}=3\left(1\right)\)
Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\left(a\ge0\right)\\\sqrt[4]{17-x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^4+b^4=17\left(2\right)}\)
\(\left(1\right)\Leftrightarrow a+b=3\Leftrightarrow a=3-b\)
Thế vào (2) ta được
\(\left(2\right)\Leftrightarrow\left(3-b\right)^4+b^4=17\)
\(\Leftrightarrow2b^4-12b^3+54b^2-108b+64=0\)
\(\Leftrightarrow b^4-6b^3+27b^2-54b+32=0\)
\(\Leftrightarrow\left(b^4-2b^3\right)+\left(-4b^3+8b^2\right)+\left(19b^2-38b\right)+\left(-16b+32\right)=0\)
\(\Leftrightarrow\left(b-2\right)\left(b^3-4b^2+19b-16\right)=0\)
\(\Leftrightarrow\left(b-2\right)\left(\left(b^3-b^2\right)+\left(-3b^2+3b\right)+\left(16b-16\right)\right)=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-1\right)\left(b^2-3b+16\right)=0\)
Ta dễ dàng thấy rằng \(\left(b^2-3b+16\right)>0\)nên phương trình có 2 nghiệm là
\(\Leftrightarrow\orbr{\begin{cases}b=2\\b=1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)
Tới đây thì đơn giải rồi bạn chỉ việc thế số vô là ra nhé
Với i = 1 thì
\(1+x_1\ge1+x_1\) (đúng)
Giả sử bất đẳng thức đúng đến i = k thì ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\ge1+x_1+x_2+...+x_k\)
Đặt \(1+x_1+x_2+...+x_k=y\)
\(\Rightarrow x_1+x_2+...+x_k=y-1\)
\(\Rightarrow y-1\)cùng dấu với xn
Ta chứng minh bất đẳng thức đúng với \(i=k+1\)
Ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\left(1+x_{k+1}\right)\ge\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\)
Ta chứng minh
\(\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\ge1+x_1+x_2+...+x_k+x_{k+1}\)
\(\Leftrightarrow y\left(1+x_{k+1}\right)\ge y+x_{k+1}\)
\(\Leftrightarrow x_{k+1}\left(y-1\right)\ge0\)
Bất đẳng thức này đúng vì \(x_{k+1};\left(y-1\right)\)là hai số cùng dấu
\(\Rightarrow\)Bất đẳng thức đúng với i = k + 1
Vậy bất đẳng thức ban đầu là đúng (phương pháp quy nạp nhé bạn)
Ta có
\(\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y+z}{12}+\frac{y+2z}{18}\ge\frac{3x}{6}=\frac{x}{2}\)
\(\Leftrightarrow\frac{x^3}{\left(y+z\right)\left(y+2z\right)}\ge-\frac{y+z}{12}-\frac{y+2z}{18}+\frac{x}{2}=\frac{18x-7z-5y}{36}\)
Tương tự ta có
\(\frac{y^3}{\left(z+x\right)\left(z+2x\right)}\ge\frac{18y-7x-5z}{36}\)
\(\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\ge\frac{18z-7y-5x}{36}\)
Cộng vế theo vế ta được
\(A\ge\frac{18x-7z-5y}{36}+\frac{18y-7x-5z}{36}+\frac{18z-7y-5x}{36}\)
\(=\frac{x+y+z}{6}\ge\frac{3\sqrt[3]{xyz}}{6}=\frac{3.2}{6}=1\)
Dấu = xảy ra khi x = y = z = 2
M N P G x y z a b c
Đặt độ dài các cạnh như hình vẽ trên.
Cô sẽ dùng kiến thức lượng giác lớp 10 để giải. Một cố công thức và bất đẳng thức cơ sở để làm bài này, các em có thể kham khảo trên các webside khác.
Áp dụng công thức \(cotA=\frac{b^2+c^2-a^2}{4S}\) ( S là diện tích của tam giác chứa góc A)
và dễ thấy \(S_{\Delta GMN}=S_{\Delta GNP}=S_{\Delta GMP}=\frac{1}{3}S_{\Delta MNP}\). Từ đó ta có:
\(cotGNP+cotGPM+cotGMN=\frac{a^2+y^2-b^2}{4S_{\Delta GNP}}+\frac{z^2+b^2-c^2}{4.S_{\Delta GPM}}+\frac{x^2+c^2-a^2}{4.S_{\Delta GMN}}\)
\(=\frac{x^2+a^2-b^2+z^2+b^2-c^2+x^2+c^2-a^2}{4.\frac{1}{3}.S_{\Delta MNP}}\)
\(=\frac{x^2+y^2+z^2}{4.\frac{1}{3}.S_{\Delta MNP}}=3\sqrt{3}\)
Suy ra: \(x^2+y^2+z^2=4\sqrt{3}.S_{\Delta MNP}\). (1)
Áp dụng công thức: \(x=2R.sinP;y=2R.sinM;z=2r.sinN;S_{\Delta MNP}=2R.sinM.sinN.sinP\) ( R là bán kính đường tròn nội tiếp tam giác ). Thay vào (1) và rút gọn ta có:
\(sin^2M+sin^2N+sin^2P=2\sqrt{3}.sinM.sinN.sinP\)
\(\Leftrightarrow\frac{3\sqrt{3}}{2}\left(sin^2M+sin^2N+sin^2P\right)=9.sinM.sinN.sinP\)(2)
Áp dụng bất đẳng thức: Trong tam giác MNP bất kì ta có: \(sinM+sinN+sinP\le\frac{3\sqrt{3}}{2}\) vào vế trái của (2) ta có:
\(\frac{3\sqrt{3}}{2}\left(sin^2M+sin^2N+sin^2P\right)\ge\left(sinM+sinN+sinP\right)\left(sin^2M+sin^2N+sin^2P\right)\)
\(\ge3\sqrt[3]{sinM.sinN.sinP}.3\sqrt[3]{sin^2M.sin^2N.sin^2P}=9.sinM.sinN.sinP\).
Dấu bằng xảy ra khi \(sinM=sinN=sinP\) hay \(\widehat{M}=\widehat{N}=\widehat{P}=60^o\). Hay tam giác MNP đều.
c/ Ta có BF = FD
=> Tam giác BFD cân tại F
=> \(\widehat{FBD}=\widehat{FDB}=\frac{\widehat{AFB}}{2}=30\)
=> \(\widehat{BDC}=\widehat{ADC}-\widehat{BDF}=120-30=90\left(1\right)\)
Tam giác BME có
BM = BE
\(\widehat{MBE}=60\)
=> Tam giác MBE là tam giác đều
Tam giác MEC cân vì có ME = EC
=> \(\widehat{EMC}=\widehat{MCE}=\frac{\widehat{MEB}}{2}=30\)
=> \(\widehat{BMC}=\widehat{BME}+\widehat{EMC}=60+30=90\left(2\right)\)
Từ (1) và (2) => tứ giác BMCD nội tiếp đường tròn tâm E
Ta lại có \(\widehat{MBD}=\widehat{CBD}+\widehat{MBC}=30+60=90\)
=> DM là đường kính của đường tròn tâm E
=> M,E,D thẳng hàng
A D C B E F
a/ Ta có
AF vừa bằng BE vừa // BE nên tứ giác ABEF là hình bình hành
Ta lại có \(AB=AF=\frac{AD}{2}\)
=> Tứ giác ABEF là hình thoi
=> AE vuông góc với BF
b/ Ta có
AB = DC (hai cạnh đối của hình bình hành) (1)
Xét \(\Delta ABF\)có
\(AB=AF=\frac{AD}{2}\)
\(\widehat{BAF}=60\)
\(\Rightarrow\Delta ABF\)đều
\(\Rightarrow AB=BF\)(2)
Từ (1) và (2) => BF = CD
Và FD // BC
=> Tứ giác BFDC là hình thang cân
c/ Đề thiếu dữ kiện không làm được câu c. Điểm M ở đâu
Sửa câu b/ Thành chứng minh tứ giác BFDC là hình thang can
Mình có ý tưởng vầy nè. Bạn phát triên nó xe sao
Điều kiện \(-1\le x\le1\)
Đặt \(\hept{\begin{cases}!x!=a\left(0\le a\le1\right)\\\sqrt{1-x^2}=b\left(0\le b\le1\right)\end{cases}\Rightarrow a^2+b^2=1}\)
\(BPT\Leftrightarrow2ab+\left(1-k\right)\left(a+b\right)+2-k\le0\)
\(\Leftrightarrow k\ge\frac{2ab+a+b+2}{a+b+1}\)
Vậy giờ bạn làm bài khác nè
Tìm GTNN của \(\frac{2ab+a+b+2}{a+b+1}\)
Với \(\hept{\begin{cases}\left(0\le a\le1\right)\\\left(0\le b\le1\right)\\a^2+b^2=1\end{cases}}\)
Ý tưởng của alibaba nguyễn gần đúng như ý tưởng của cô.
Nhưng thay vì đưa về hệ, cô đặt \(\left|x\right|+\sqrt{1-x^2}=t\) , khi đó \(1\le t\le\sqrt{2}\).
Sau đó rút k theo t ta được \(k\ge\frac{t^2+t+1}{t+1}=t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).
Khi đó giá trị nhỏ nhất mà k cần đạt chính là GTLN của \(t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).
1. Xét tứ giác CEHD ta có:
Góc CEH = 900 (Vì BE là đường cao)
Góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.
CF là đường cao => CF ┴ AB => góc BFC = 900.
Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.
Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.
3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung
=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.
* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung
=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.
4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)
góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)
=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C
=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.
5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn
=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)
Cũng theo chứng minh trên CEHD là tứ giác nội tiếp
góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)
góc E1 = góc E2 => EB là tia phân giác của góc FED.
Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.
O B A C E
Vì tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\)
Lại có \(\widehat{ACB}\) và \(\widehat{OCE}\) là hai góc đối đỉnh nên chúng bằng nhau. Nói cách khác \(\widehat{OCE}=\widehat{ABC}\)
Do OE = OB nên \(\widehat{OEB}=\widehat{OBE}\)
Mà \(\widehat{ABC}+\widehat{OBE}=90^o\Rightarrow\widehat{OCE}+\widehat{OEB}=90^o\Rightarrow\widehat{EOC}=90^o.\)
Vậy \(OE\perp OA.\)