K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Cặp góc so le trong là:}\)

\(A_3\text{ và }B_1\)

\(A_4\text{ và }B_2\)

\(\text{Cặp góc đồng vị là:}\)

\(A_2\text{ và }B_2\)

\(A_3\text{ và }B_3\)

\(A_1\text{ và }B_1\)

\(A_4\text{ và }B_4\)

7 tháng 4 2022
Rủ rỉ Xg từ đó fb tí gì

loading...

3
1 tháng 4 2022

109 có 

2 tháng 4 2022

ngu vậy trời

21 tháng 3 2022

Can I have a question?

What experiences about?

21 tháng 3 2022

2: Whers

18 tháng 3 2022
Cái này thì mình cũng cúi đầu chịu luôn
18 tháng 3 2022
Lại còn tiếng Anh lớp 7 nữa

loading...

26
14 tháng 3 2022
??????????
14 tháng 3 2022

bằng tiếng anh hết à!!

loading...

7
10 tháng 3 2022

Dàn ý:

- Writer address/ reader address thì tự viết

- Greeting: Dear principal ......

- Who you are: I am an student from class ..... name .... (....) I write to you because I am so disappointed about food in cafeteria....

- Problems: the food is not good, too many fat, less vegetable,...

- Solutions: more choices, more vegetables...

- Do smth: I really believe in your power and I know you can do (change food, more menus, ....)

- Finish: I know you can do it. Signature, ......

Đây là dạng bài Ngữ Văn + Anh nên ko có kết quả cụ thể nên bạn có thể xem văn mẫu và dàn ý nhé!

13 tháng 3 2022
Jfprfbbggf

Giả sử n2+9n+24 chia hết cho 25

=> (n+3)2+15 chia hết cho 5

=> n+3 chia hết cho 5

=> (n+3)2 chia hết cho 25

=> (n+3)2+15 không chia hết cho 25 ( Vô lý)

=> giả sử sai 

=> đccm

7 tháng 3 2022

Giả sử \(n^2+9n+24⋮25\)\(\Rightarrow n^2+9n+24⋮5\)(1)

Ta có \(n^2+9n+24\)\(=n^2+2n+7n+14+10\)\(=n\left(n+2\right)+7\left(n+2\right)+10\)\(=\left(n+2\right)\left(n+7\right)+10\)(2)

Từ (1) và (2)\(\Rightarrow\left(n+2\right)\left(n+7\right)+10⋮5\)

Mà \(10⋮5\)nên \(\left(n+2\right)\left(n+7\right)⋮5\), mà 5 là số nguyên tố nên 1 trong 2 số \(n+2;n+7\)chia hết cho 5

Khi \(n+2⋮5\)thì \(n+2+5⋮5\)hay \(n+7⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)

Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)

Khi \(n+7⋮5\)thì \(n+7-5⋮5\)hay \(n+2⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)

Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)

Vậy điều giả sử sai \(\Rightarrow n^2+9n+24⋮̸25\)

DD
8 tháng 3 2022

Ba số nguyên tố có tổng là \(38\)là một số chẵn nên trong ba số đó có số \(2\).

Tổng hai số còn lại là \(36\).

Gọi hai số đó là \(a,b\).

Ta có: \(a^2+b^2=\left(a+b\right)^2-2ab=36^2-2ab\)

Để \(\left(a^2+b^2\right)_{max}\)thì \(ab\)đạt min. 

Nếu \(a=b\)thì \(a=b=18\)không là số nguyên tố.

Không mất tính tổng quát, giả sử \(a>b>0\) 

Ta có nhận xét rằng \(a-b\)càng lớn thì \(ab\)càng nhỏ. 

Thật vậy, nếu ta thay \(a\)bằng \(a+1\)và \(b\)bằng \(b-1\)thì: 

\(\left(a+1\right)\left(b-1\right)=ab-a+b-1=ab-\left(a-b\right)-1< ab\)

Do đó để thỏa mãn ycbt thì ta cần tìm hai số nguyên tố \(a,b\)sao cho \(a+b=36\)và \(b\)nhỏ nhất. 

Với \(b=3\Rightarrow a=33\)loại. 

Với \(b=5\Rightarrow a=31\)(thỏa mãn) 

Vậy ba số nguyên tố thỏa mãn ycbt là \(2,5,31\).

Khi đó tổng bình phương lớn nhất là: \(2^2+5^2+31^2=990\).

8 tháng 3 2022

=990 nha ht

14 tháng 1 2022
Sao ko lên Quanda mà tra ý. Ở đấy cái gì cũng trả lời đc
14 tháng 1 2022
Người ta k biết mới hỏi
NM
13 tháng 1 2022

gọi \(a_1,a_2...a_{1001}\) là 1001 số nguyên dương đã cho xếp từ bé đến lớn 

nghĩa là \(a_{1001}\) là số nguyên dương lớn nhất.

giả sử không thể chọn ra 3 số mà tổng hai số bất kỳ luôn khác số còn lại 

khi đó ta có : 

\(a_1,a_2,...a_{1001},a_{1001}-a_1;a_{1001}-a_2;....;a_{1001}-a_{1000}\) là 2001 số nguyên dương phân biệt nhỏ hơn 2000

điều này là vô lý vì chỉ có 2000 số nguyên dương bé hơn 2000

vậy giả sử là sai và ta có điều phải chứng minh

13 tháng 1 2022
Tôi không biết Xin lỗi vì đã làm ngài thất vọng 😔😔