Tìm tất cả các cặp số nguyên dương (a; b) sao cho \(\left(a+b^2\right)\)chia hết cho \(\left(a+b^2\right)\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\)
Từ \(x^4+y^4+z^4=xyz\left(x+y+z\right)\left(1\right)\)
Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\), dấu "=" khi a=b=c ta có:
\(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\)\(\ge x^2y^2+y^2z^2+z^2x^2\)
\(\ge xy\cdot yz+xy\cdot xz+yz\cdot xz=xyz\left(x+y+z\right)\)
Suy ra \(\left(1\right)\Leftrightarrow x=y=z\)
Mà x+y+z=1 \(\Rightarrow x=y=z=\frac{1}{3}\)
Vậy hệ có nghiệm (x;y;z)=\(\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right)\)
Ta đặt \(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}\Rightarrow ab=1}\)
\(BĐT\Leftrightarrow\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge4\)
Ta có
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+a^2+\frac{1}{a^2}\)
\(=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\left(a-\frac{1}{a}\right)^2+2\)
\(\ge2+2=4\)
Đặt cái ban đầu là A
Dầu tiên ta có
\(\text{(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b)}\)
\(=4\left(a+b+c+d\right)^2\)
Ta có: \(\frac{a-b}{a+2b+c}+\frac{1}{2}=\frac{1}{2}.\frac{3a+c}{a+2b+c}=\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)
Tương tự ta có
\(\frac{b-c}{b+2c+d}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}\)
\(\frac{c-d}{c+2d+a}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}\)
\(\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}\)
Cộng vế theo vế ta được
\(\frac{a-b}{a+2b+c}+\frac{1}{2}+\frac{b-c}{b+2c+d}+\frac{1}{2}+\frac{c-d}{c+2d+a}+\frac{1}{2}+\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}+\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}+\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}+\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)
\(\ge\frac{1}{2}.\frac{\left(3a+c+3b+d+3c+a+3d+b\right)^2}{\left(3a+c\right)\left(a+2b+c\right)+\left(3b+d\right)\left(b+2c+d\right)+\left(3c+a\right)\left(c+2d+a\right)+\left(3d+b\right)\left(d+2a+b\right)}\)
\(=\frac{1}{2}.\frac{16\left(a+b+c+d\right)^2}{4\left(a+b+c+d\right)^2}=2\)
\(\Rightarrow A+2\ge2\)
\(\Leftrightarrow A\ge0\)
=4(a+b+c+d)2
Ta có: a−ba+2b+c +12 =12 .3a+ca+2b+c =12 .(3a+c)2(3a+c)(a+2b+c)
Tương tự ta có
b−cb+2c+d +12 =12 .(3b+d)2(3b+d)(b+2c+d)
c−dc+2d+a +12 =12 .(3c+a)2(3c+a)(c+2d+a)
d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b)
Cộng vế theo vế ta được
a−ba+2b+c +12 +b−cb+2c+d +12 +c−dc+2d+a +12 +d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) +12 .(3c+a)2(3c+a)(c+2d+a) +12 .(3b+d)2(3b+d)(b+2c+d) +12 .(3a+c)2(3a+c)(a+2b+c)
≥12 .(3a+c+3b+d+3c+a+3d+b)2(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b)
=12 .16(a+b+c+d)24(a+b+c+d)2 =2
⇒A+2≥2
Tử là mũ 2 thật hả bạn. Mũ 3 thì giải được còn mũ 2 thì vẫn chưa nghĩ ra
Theo bài ra ta có \(0\le a\le b\le c\) nên b\(+\)c \(\ge\)2b
Do đó suy ra \(\frac{2a^2}{b+c}\le\frac{2a^2}{2b}\)suy ra \(\frac{2a^2}{b+c}\le\frac{a^2}{b}\)
Chưng minh tương tự có \(\frac{2b^2}{c+a}\le\frac{b^2}{c}\)và \(\frac{2c^2}{a+b}\le\frac{c^2}{a}\)
Cộng vế với vế của các bđt cùng chiều trên ta sẽ suy ra điều phải chứng minh
#nga
Sai rồi nếu như theo cách chứng minh của bạn thì ta có: a + c \(\ge2c\)cái này vô lý.
a) Do C thuộc đường tròn mà DB là đường kính nên góc \(\widehat{BCD}\) chắn nửa đường tròn.
\(\Rightarrow\widehat{BCD}=90^o\Rightarrow BC\perp DC\)
Theo tính chất hai tiếp tuyến cắt nhau, ta có OH là phân giác góc BOC. Lại có OBC là tam giác cân tại O nên OH cũng là đường cao.
Vậy \(OH\perp BC\)
b) Xét tam giác vuông OCA có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có: \(OH.OA=OC^2=R^2\)
Xét tam giác vuông DBA có đường cao BE nên áp dụng hệ thức lượng trong tam giác vuông, ta có:
\(DE.DA=BD^2=\left(2R\right)^2=4R^2\)
c) Xét tam giác MBA có OH và BE là các đường cao nên N là trực tâm.
Vậy thì \(MN\perp BA\)
Lại có \(BD\perp BA\) nên BD // MN.
d) Ta chứng minh \(OF\perp AD\)
Ta có \(\widehat{BCA}=\widehat{DCO}\) (Cùng phụ với góc OCB)
\(\Rightarrow\widehat{BCA}+90^o=\widehat{DCO}+90^o\Rightarrow\widehat{DCA}=\widehat{FCO}\) (1)
Ta cũng có tứ giác ABOC nội tiếp nên \(\widehat{CAO}=\widehat{CBO}\)
Mà \(\widehat{CBO}=\widehat{CDF}\) (Cùng phụ với góc CFD)
\(\Rightarrow\widehat{CAO}=\widehat{CDF}\)
Vậy thì \(\Delta CAO\sim\Delta CDF\left(g-g\right)\Rightarrow\frac{CA}{CD}=\frac{CO}{CF}\Rightarrow\frac{CA}{CO}=\frac{CD}{CF}\) (2)
Từ (1) và (2) suy ra \(\Delta DCA\sim\Delta FCO\left(c-g-c\right)\Rightarrow\widehat{ADC}=\widehat{OFC}\)
\(\Rightarrow\widehat{ADF}-\widehat{CDF}=\widehat{CFD}-\widehat{OFD}\)
\(\Rightarrow\widehat{ADF}+\widehat{OFD}=\widehat{CFD}+\widehat{CDF}=90^o\)
\(\Rightarrow\widehat{DKF}=90^o\Rightarrow OF\perp AD\)
Xét tam giác cân DOE có OK là đường cao nên đồng thời là trung tuyến. Vậy K là trung điểm DE.
Xét tam giác vuông ABD có BE là đường cao nên \(\frac{1}{BE^2}=\frac{1}{BA^2}+\frac{1}{BD^2}=\frac{1}{5R^2}+\frac{1}{4R^2}=\frac{9}{20R^2}\)
\(\Rightarrow BE^2=\frac{20R^2}{9}\)
Xét tam giác vuông BED, theo định lý Pi-ta-go ta có:
\(DE^2=BD^2-BE^2=4R^2-\frac{20R^2}{9}=\frac{16R^2}{9}\)
\(\Rightarrow DE=\frac{4R}{3}\)
\(\Rightarrow KE=\frac{2R}{3}\)
Đề đúng : tìm tất cả các số nguyên dương \(a,b\) sao cho \(a+b^2\) chia hết cho \(a^2b-1\)
Có thể vào đây tham khảo\(\rightarrow\) Các bài toán và vấn đề về Số học
de the nao lam nhu vay
Tra loi: tat ca cac so nguyen duong a,b deu thoa man