Tìm x ; y nguyên dương để \(\sqrt{x}\) + \(\sqrt{y}\) = 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì abc<1000
=>a<7
=>abc<700
=> 1<=a,b,c<=5
Ta đi chứng minh trong 3 số a,b,c tồn tại một số bằng 5
Thật vậy: Giả sử cả 3 số a,b,c<=4
=>abc<=72<100 vô lí
Do đó a=5 hoặc b=5 hoặc c=5
*Nếu a=5
Ta có
500+bc=5!+b!+c!<=240+b!
=>b!+240>500
=>b!>260
=>b>5 vô lí
Nên a<=4
*Nếu b=5
Lập luận tương tự b<=4
*Nếu c=5
Tìm được a=1;b=4
Vậy…
abc=100a+ 10b +c =a! +b! +c!.
0! = 1, 2! = 2, 3!= 6, 4! = 24, 5!= 120, 6!= 720, 7! = 5040 (4 chữ số) => a; b; c <7, a khác 0
- xét trường hợp a= 6, thì 600+ 10b+ c= 720+b! + c! <=> 10b+ c =120 +b! +c! (vô lý vì b, c <7)
- nếu a= 5 thì 500+ 10b +c = 120 +b!+ c! [vô lý vì vt >500, vp <360 (a=5, b=5, c=5)] ( vt= vế trái, vp= vế phải)
- nếu a= 4 thì 400+ 10b +c = 24 +b!+ c! [vô lý vì vt >400, vp < 264 (a=4, b=5, c=5)]
- nếu a= 3 thì 300+ 10b +c = 6 +b!+ c! [vô lý vì vt >300, vp <246 (a=3, b=5, c=5) ]
các trường hợp a=5,4,3 thì b và c không thể là số 6, giá trị lớn nhất của b và c là 5
- nếu a= 2 thì 200+ 10b +c = 2+b!+ c! <=> 128+ 10b+ c= b! + c! => b hoậc c là 5
+ b= 5 thì 128+ 50 +c= 120+ c! (không tồn tại c )
+c=5 thì 128+10b+ 5= b! +120 (không tồn tại b )
=> a=1 và ta có 100+ 10b+ c= 1 +b! +c! => b hoặc c là 5
+ b=5 thì 100+ 50+ c= 1 +120 +c! ( không tồn tại c)
+c= 5 thì 100+ 10b+ 5= 1 +b! +120 <=> 10b= 16+ b! <=> b=4
vậy abc= 145.
bài giải hơi dài, nhưng suy nghĩ ra nghiệm dễ vì a, b, c chạy từ 0 đến 6
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có : 1 < n < 2000
xét (n^2+7)/(n+4) = (n^2-16+23)/(n+4) = n-4+23/(n+4)
để (n^2+7)/(n+4) ko là phân số tối giản thì 23/(n+4) phải ko là phân số tối giản
suy ra n+4 phải chia hết cho 23
suy ra n = 23*k-4 (k thuộc N*)
thay vào phương trình đầu ta có:
1 < 23*k-4 < 2000 tương đương
5 < 23*k < 2004 tương đương
5/23 < k < 2004/23 tương đương
0,23 < k < 87,13
lấy giá trị N* lớn nhất của k ta có số số tự nhiên n là 87
![](https://rs.olm.vn/images/avt/0.png?1311)
+) Tìm số abc:
Vì abc > 600 và a chẵn nên a = 6 hoặc 8.
- nếu a = 6, ta có a.b.c = 6. 2m.2n = 24.m.n (đặt b = 2m, c = 2n, do b; c chẵn)
do số 6bc chia hết a.b.c nên 6bc chia hết 24.m.n hay 6bc là bội của 24, có thể là 624; 648;672; 698
đối chiếu điều kiện, chỉ có 624 thoả mãn
- nếu a = 8, ta có a.b.c = 8. 2m.2n = 32.m.n , tương tự như trên số 8bc là bội của 32, có thể là 800; 832; 864; 896
đối chiếu điều kiện, không có số nào thoả mãn
Vậy abc = 624
+) Tìm x, y
xxyy = (xx)2 + (yy)2
=> 1100. x + 11. y = 121.x2 + 121.y2 (cấu tạo số)
=> 100.x + y = 11x2 + 11y2 => x + y = 11.(x2 + y2) - 99.x
Vế phải luôn chia hết cho 11 nên vế trải phải chia hết cho 11, x; y là các chữ số nên x+ y = 11
+) Vậy \(A=\frac{1998\left(6+2+4-1\right)}{1999.11}=\frac{1998.11}{1999.11}=\frac{1998}{1999}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, f(x)=( x - 100 )( x5 - x4 + x3 - x2 + x ) - x + 25
=>f(100) = - 75
![](https://rs.olm.vn/images/avt/0.png?1311)
giả sử tồn tại,
vì abc là số có 3 chữ số nên 99 < abc < 1000 mà abc = (a+b+c)3 do đó
a+b+c chỉ có thể nhận các giá trị bằng 5; 6; 7; 8; 9
nếu a+b+c = 5 => abc = 53 = 125 khác (1+2+5)3 = 83
nếu a+b+c = 6 => abc = 63 = 216 khác (2+1+6)3 = 93
nếu a+b+c = 7 => abc = 73 = 343 khác (3+4+3)3 = 103
nếu a+b+c = 8 => abc = 83 = 512 = (5+1+2)3 = 83 (nhận)
nếu a+b+c = 9 => abc = 93 = 729 khác (7+2+9)3 = 183
Vậy có tồn tại ......
![](https://rs.olm.vn/images/avt/0.png?1311)
<=> (8x2 - 2x).(64x2 -16x +1) =9
=> 512x4 -128x3 +8x2 - 128x3 +32x2 -2x =9
=> 512x4 -256x3 +40x2 -2x - 9 = 0
=> ( 512x4 -256x3) + (40x2 - 20x) + (18x - 9) = 0
=> 256x3.(2x - 1) + 20x.(2x - 1) + 9.(2x- 1) = 0
=> (2x - 1).(256x3 + 20x + 9) = 0 => (2x - 1).(256x3 + 64x2 - 64x2 - 16x + 36x + 9) = 0
=> (2x - 1).[(256x3 + 64x2 ) - (64x2 + 16x) + (36x + 9)] = 0
=> (2x - 1).[64x2 (4x + 1) - 16x(4x + 1) + 9(4x + 1)] = 0 => (2x - 1).(4x+1)(64x2- 16x + 9) = 0
=> 2x -1 = 0 hoặc 4x + 1 = 0 hoặc 64x2- 16x + 9 = 0
Vì 64x2- 16x + 9 = (8x - 1)2 + 8 > 0 nên 64x2- 16x + 9 = 0 vô nghiệm
Vậy x = 1/2 hoặc -1/4
![](https://rs.olm.vn/images/avt/0.png?1311)
a(m+p) = 5(m+n) => \(\frac{m+n}{m+p}=\frac{a}{5}\)
từ đẳng thức thứ 2 => 25.(p - n)(2m+n+p) = 21(m+p)2 ==> 25.(m+ p- m - n)(m+n+ m + p) = 21(m+p)2
Chia cả 2 vế chp (m+p)2 ta được
\(25.\left(\frac{m+p}{m+p}-\frac{m+n}{m+p}\right)\left(\frac{m+n}{m+p}+\frac{m+p}{m+p}\right)=21\)
thay (*) vào ta đc
\(\Rightarrow25.\left(1-\frac{a}{5}\right)\left(\frac{a}{5}+1\right)=21\)\(\Rightarrow25.\left(1-\left(\frac{a}{5}\right)^2\right)=21\)
\(\Rightarrow25.\left(\frac{25-a^2}{25}\right)=21\Rightarrow25-a^2=21\Leftrightarrow a^2=4\Rightarrow a=2;-2\)
vậy ....
\(\sqrt{x}+\sqrt{y}=9\Rightarrow\sqrt{x}=9-\sqrt{y}\)
Vì \(\sqrt{x}\ge0\Rightarrow9-\sqrt{y}\ge0\Rightarrow\sqrt{y}\le9\)
Do x, y nguyên dương nên \(\sqrt{y}\) = 1; 2; 3; 4; 5;6;7;8
=> tương ứng y = 1;4;9;16;25;36;49;64;
=> x = 64;49;36;25;16;9;4;1
vậy....