Giải phương trình
\(x^2+\left(\frac{x}{x+1}\right)^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a+b+c=0\\ab+bc+ca+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=-2\left(ab+bc+ca\right)\\-\left(ab+bc+ca\right)=3\end{cases}}\)
\(\Rightarrow a^2+b^2+c^2=6\)
\(\Rightarrow a^2\le6\)
\(\Leftrightarrow-2\le a\le2\)
\(\Rightarrow\) a \(\in\){ -2; - 1; 0; 1; 2}
Thế a = - 2 vào hệ ban đầu ta được
\(\Rightarrow\hept{\begin{cases}b+c=2\\-2b+bc-2c+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=1\\c=1\end{cases}}\)
Tương tự cho các trường hợp còn lại
Đặt \(\hept{\begin{cases}\sqrt[3]{a}=x\\\sqrt[3]{b}=b\end{cases}}\)
Thì đề bài trở thành
Cho \(x+y=\sqrt[3]{y^3-\frac{1}{4}}\)
Chứng minh: \(0>x\ge-1\)
Lập phương 2 vế ta được:
\(\left(x+y\right)^3=y^3-\frac{1}{4}\)
\(\Leftrightarrow12xy^2+12x^2y+4x^3+1=0\)
Với \(x=0\) thì
\(\Rightarrow1=0\left(l\right)\)
Với \(x\ne0\)
Để phương trình theo nghiệm y có nghiệm thì
\(∆'=36x^4-12x\left(4x^3+1\right)\ge0\)
\(\Leftrightarrow x^4+x\le0\)
\(\Leftrightarrow-1\le x< 0\)
Vậy ta có ĐPCM
\(A=\frac{\left(1-\tan^2x\right)^2}{4\tan^2x}-\frac{1}{4\sin^2x.\cos^2x}\)
\(=\frac{1}{\tan^22x}-\frac{1}{\sin^22x}\)
\(=\frac{\cos^22x}{\sin^22x}-\frac{1}{\sin^22x}\)
\(=\frac{\cos^22x-1}{\sin^22x}=\frac{-\sin^22x}{\sin^22x}=-1\)
Vậy A không phụ thuộc vào x
Cho \(P=9xy+10yz+11xz\), với \(x+y+z=1\) thì
\(P=9xy+10yz+11xz=9xy+z\left(10y+11x\right)\)\(=9xy+\left(1-x-y\right)\left(10y+11x\right)\)
Khai triển và rút gọn, ta thu được
\(P=-11x^2-10y^2+11x+10y-12xy\)
\(\Leftrightarrow11x^2+\left(12y-11\right)x+10y^2-10y+P=0\)(*)
Coi đây là tam thức bậc hai ẩn x, , do điều kiện tồn tại của x nên suy ra (*) phải có nghiệm, tức là
\(\Delta=\left(12y-11\right)^2-44\left(10y^2-10y+P\right)\ge0\)
Hay \(-296y^2+176y+121-44P\ge0\)
\(\Leftrightarrow P\le-\frac{74}{11}\left(y^2-\frac{22}{37}y-\frac{121}{296}\right)\)
Dễ thấy: \(y^2-\frac{22}{37}y-\frac{121}{296}\ge-\frac{5445}{10952}\)
\(\Rightarrow P\le\left(-\frac{74}{11}\right)\cdot\left(-\frac{5445}{10952}\right)=\frac{195}{148}\)
Đẳng thức xảy ra khi \(x=\frac{25}{74};y=\frac{11}{37};z=\frac{27}{74}\)
T/b: giải toán với sự trợ giúp của Wolfram|Alpha, bài này còn có cách hệ số bất định uct nhưng mình chưa hiểu lắm, để mai hỏi cô r` post cho :))
Dùng hệ số bất định giải
Ta có:
\(9xy+10yz+11zx=5\left(xy+zx\right)+4\left(yz+xy\right)+6\left(zx+yz\right)\)
\(=5x\left(1-x\right)+4y\left(1-y\right)+6z\left(1-z\right)=\left(5x-5x^2\right)+\left(4y-4y^2\right)+\left(6z-6z^2\right)\)
\(=\frac{255}{148}+\frac{60}{37}\left(x+y+z\right)-\left(5x^2-\frac{125x}{37}+\frac{3125}{5476}\right)-\left(4y^2-\frac{88y}{37}+\frac{484}{1369}\right)-\left(6z^2-\frac{162z}{37}+\frac{2187}{2738}\right)\)
\(=\frac{495}{148}-5\left(x-\frac{25}{74}\right)^2-4\left(y-\frac{11}{37}\right)^2-6\left(z-\frac{27}{74}\right)^2\le\frac{495}{148}\)
Vậy GTLN là \(\frac{495}{148}\)đạt được khi \(\hept{\begin{cases}x=\frac{25}{74}\\y=\frac{11}{37}\\z=\frac{27}{74}\end{cases}}\)
\(tacó
18-8\sqrt{2}=\left(\sqrt{2}-4\right)^2
\)) (phân tích theo HĐt)
suy ra \(\sqrt{6-2\sqrt{2}+\sqrt{12}+4-\sqrt{2}}\)( vì 4 > căn 2)
RG ta đc
\(\sqrt{10-3\sqrt{2}+2\sqrt{3}}\)
{ \(\sqrt{10-\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}\)bỏ bước này cx đc }
bn nên xem lại đề vì k bài nào kêu tính mà ra KQ nhìu căn như w
nhớ cho mik nha ~!!!
a) Do BHCK là hình bình hành nên BH // KC \(\Rightarrow KC\perp AC\Rightarrow\widehat{ACK}=90^o\)
KB // CF \(\Rightarrow\widehat{ABK}=90^o\)
Hai tam giác vuông ABK và ACK chung cạnh huyền AK nên A, B, C, K cùng thuộc đường tròn đường kính AK. Vậy K thuộc đường tròn (O).
b) Do BHCK là hình bình hành nên I là trung điểm HK.
AK là đường kính nên \(\widehat{AA'K}=90^o\Rightarrow\) DI // A'K
Vậy DI là đường trung bình tam giác HA'K. Suy ra HD = DA'
Tương tự : HF = FC' ; HE = EB'
Ta có : \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=\frac{AD+DA'}{AD}+\frac{BE+EE'}{BE}+\frac{CF+FC'}{CF}\)
\(=1+\frac{DA'}{AD}+1+\frac{EB'}{BE}+1+\frac{FC'}{CF}=3+\left(\frac{DA'}{AD}+\frac{EB'}{BE}+\frac{FC'}{CF}\right)\)
\(=3+\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)=3+\left(\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}\right)\)
\(=3+\frac{S_{ABC}}{S_{ABC}}=3+1=4\)
Vậy nên \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)
c) Ta thấy \(\widehat{AKC}=\widehat{ABC}=\widehat{AHF}\)
Vậy nên \(\Delta AFH\sim\Delta ACK\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{AF}{AC}\) (1)
AFH và AEH là các tam giác vuông chung cạnh huyền AH nên AFHE là tứ giác nội tiếp.
Vậy thì \(\widehat{AFM}=\widehat{AHE}=\widehat{ACN}\)
Lại có \(\Delta AFH\sim\Delta ACK\Rightarrow\widehat{FAM}=\widehat{CAN}\)
Nên \(\Delta AFM\sim\Delta ACN\left(g-g\right)\Rightarrow\frac{AF}{AC}=\frac{AM}{AN}\) (2)
Từ (1) và (2) suy ra \(\frac{AH}{AK}=\frac{AM}{AN}\Rightarrow\frac{AH}{AM}=\frac{AK}{AN}\Rightarrow\) MN // HK (Định lý Talet đảo)
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.
\(x^2-2x+1=0\)
\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.
Vậy đề bài sai.
Ta có:
\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)
\(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)
Dấu = xảy ra khi \(a=b\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)
\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)
\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b\)
Cách giải giống câu này nè bạn: 903926
ĐK: x \(\ne\) -1
Đặt y = x+1
=> x = y - 1
PT tương đương
(y-1)2 + \(\frac{\left(y-1\right)^2}{y^2}\)= 1
<=> y2 - 2y + 1 + 1 - \(\frac{2}{y}\)+ \(\frac{1}{y^2}\)= 1
<=> y2 + \(\frac{1}{y^2}\) - 2(y + \(\frac{1}{y}\)) = -1
Đặt z = y + \(\frac{1}{y}\) (|z| >= 2)
=> z = y2 + \(\frac{1}{y^2}\) + 2
PT tương đương
z2 - 2 - 2z = -1
<=> z2 - 2z - 1 = 0
<=>
z = \(\frac{2-\sqrt{8}}{2}\)(loại vì |z| < 2)
hoặc z = \(\frac{2+\sqrt{8}}{2}\)= 1 +\(\sqrt{2}\)
=> y + \(\frac{1}{y}\) = 1 + \(\sqrt{2}\)
=> y2 - (1 +\(\sqrt{2}\))y + 1 = 0
Giải PT bậc 2 này tìm được 2 nghiệm y.
=> 2 nghiệm x = y - 1.
D = 2\(\sqrt{2}\)-1 > 0
y = \(\frac{\sqrt{2}+1+\sqrt{2\sqrt{2}-1}}{2}\)
hoặc y = \(\frac{\sqrt{2}+1-\sqrt{2\sqrt{2}-1}}{2}\)
=> x = y - 1 = ... \(\approx\)0.883203505913526
Hoặc x = y - 1 = ... \(\approx\)-0.468989943540431
\(x^2+\left(\frac{x}{x+1}\right)^2=1\) Điều kiện xác định \(x\ne-1\)
\(\Leftrightarrow x^2+\left(\frac{x}{x+1}\right)^2-2\frac{x^2}{x+1}+2\frac{x^2}{x+1}=1\)
\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+2\frac{x^2}{x+1}=1\)
Nhận xét \(x-\frac{x}{x+1}=\frac{x^2+x-x}{x+1}=\frac{x^2}{x+1}\)
Từ đó ta có: \(\left(x-\frac{x}{x+1}\right)^2+2\frac{x^2}{x+1}=1\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+2\left(x-\frac{x}{x+1}\right)=1\)
Đặt \(t=x-\frac{x}{x+1}\) ta có phương trình \(t^2+2t-1=0\Leftrightarrow\orbr{\begin{cases}t=1+\sqrt{2}\\t=1-\sqrt{2}\end{cases}}\)
Với \(t=1+\sqrt{2}\)ta có \(x-\frac{x}{x+1}=1+\sqrt{2}\)\(\Leftrightarrow x^2-\left(1+\sqrt{2}\right)x-\left(1+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=\frac{1+\sqrt{2}+\sqrt{7+6\sqrt{2}}}{2}\\x_1=\frac{1+\sqrt{2}-\sqrt{7+6\sqrt{2}}}{2}\end{cases}}\)
Với \(t=1-\sqrt{2}\) ta có \(x-\frac{x}{x+1}=1-\sqrt{2}\)\(\Leftrightarrow x^2-\left(1-\sqrt{2}\right)x-\left(1-\sqrt{2}\right)=0\)( vô nghiệm).