K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2015

|x| + |x - 1| + |x - 2| = x (1)

TH 1: x \(\ge\) 2

(1) <=> x + x - 1 + x - 2 = x

    <=> x = 3/2 (Loại)

TH 2: 1\(\le\)x<2

(1) <=> x + x - 1 + 2 - x = x

    <=> 1 = 0 (Vô lý)

TH 3: 0\(\le\)x<1

(1) <=> x + 1 - x + 2 - x = x

     <=> x = 3/2 (loại)

TH 4: x < 0

(1) <=> -x + 1 - x + 2 - x = x

    <=> x = 3/4 (Loại)

Vậy phương trình (1) vô nghiệm

17 tháng 4 2016

Dùng bảng xét dấu cho hay nha bạn 

3 tháng 4 2015

Chia cả tử và mẫu của các phân số cho a khác 0 ta được:

\(A=\frac{a+b}{a-b}+\frac{a-b}{a+b}=\frac{\frac{a}{b}+1}{\frac{a}{b}-1}+\frac{\frac{a}{b}-1}{\frac{a}{b}+1}=\frac{\left(\frac{a}{b}+1\right)^2+\left(\frac{a}{b}-1\right)^2}{\left(\frac{a}{b}-1\right)\left(\frac{a}{b}+1\right)}=\frac{2.\left(\frac{a}{b}\right)^2+2}{\left(\frac{a}{b}\right)^2-1}\)

\(\Rightarrow A.\left(\frac{a}{b}\right)^2-A=2.\left(\frac{a}{b}\right)^2+2\Rightarrow A.\left(\frac{a}{b}\right)^2-2.\left(\frac{a}{b}\right)^2=A+2\)

\(\Rightarrow\left(A-2\right).\left(\frac{a}{b}\right)^2=A+2\Rightarrow\left(\frac{a}{b}\right)^2=\frac{A+2}{A-2}\)

ta có: \(B=\frac{\left(\frac{a}{b}\right)^4+1}{\left(\frac{a}{b}\right)^4-1}+\frac{\left(\frac{a}{b}\right)^4-1}{\left(\frac{a}{b}\right)^4+1}\)

\(\Rightarrow B=\frac{\left(\frac{A+2}{A-2}\right)^2+1}{\left(\frac{A+2}{A-2}\right)^2-1}+\frac{\left(\frac{A+2}{A-2}\right)^2-1}{\left(\frac{A+2}{A-2}\right)^2+1}=\frac{\left(A+2\right)^2+\left(A-2\right)^2}{\left(A+2\right)^2-\left(A-2\right)^2}+\frac{\left(A+2\right)^2-\left(A-2\right)^2}{\left(A+2\right)^2+\left(A-2\right)^2}\)

\(\Rightarrow B=\frac{2.A^2+8}{8.A}+\frac{8.A}{2.A^2+8}=\frac{\left(2A^2+8\right)^2+64.A^2}{8.A\left(2A^2+8\right)}=\frac{\left(A^2+4\right)^2+16.A^2}{4.A\left(A^2+4\right)}\)

 

11 tháng 4 2015

Chia cả tử và mẫu của các phân số cho a khác 0 ta được:

$A=\frac{a+b}{a-b}+\frac{a-b}{a+b}=\frac{\frac{a}{b}+1}{\frac{a}{b}-1}+\frac{\frac{a}{b}-1}{\frac{a}{b}+1}=\frac{\left(\frac{a}{b}+1\right)^2+\left(\frac{a}{b}-1\right)^2}{\left(\frac{a}{b}-1\right)\left(\frac{a}{b}+1\right)}=\frac{2.\left(\frac{a}{b}\right)^2+2}{\left(\frac{a}{b}\right)^2-1}$A=a+ba−b +a−ba+b =ab +1ab −1 +ab −1ab +1 =(ab +1)2+(ab −1)2(ab −1)(ab +1) =2.(ab )2+2(ab )2−1 

$\Rightarrow A.\left(\frac{a}{b}\right)^2-A=2.\left(\frac{a}{b}\right)^2+2\Rightarrow A.\left(\frac{a}{b}\right)^2-2.\left(\frac{a}{b}\right)^2=A+2$⇒A.(ab )2−A=2.(ab )2+2⇒A.(ab )2−2.(ab )2=A+2

$\Rightarrow\left(A-2\right).\left(\frac{a}{b}\right)^2=A+2\Rightarrow\left(\frac{a}{b}\right)^2=\frac{A+2}{A-2}$⇒(A−2).(ab )2=A+2⇒(ab )2=A+2A−2 

ta có: $B=\frac{\left(\frac{a}{b}\right)^4+1}{\left(\frac{a}{b}\right)^4-1}+\frac{\left(\frac{a}{b}\right)^4-1}{\left(\frac{a}{b}\right)^4+1}$B=(ab )4+1(ab )4−1 +(ab )4−1(ab )4+1 

$\Rightarrow B=\frac{\left(\frac{A+2}{A-2}\right)^2+1}{\left(\frac{A+2}{A-2}\right)^2-1}+\frac{\left(\frac{A+2}{A-2}\right)^2-1}{\left(\frac{A+2}{A-2}\right)^2+1}=\frac{\left(A+2\right)^2+\left(A-2\right)^2}{\left(A+2\right)^2-\left(A-2\right)^2}+\frac{\left(A+2\right)^2-\left(A-2\right)^2}{\left(A+2\right)^2+\left(A-2\right)^2}$⇒B=(A+2A−2 )2+1(A+2A−2 )2−1 +(A+2A−2 )2−1(A+2A−2 )2+1 =(A+2)2+(A−2)2(A+2)2−(A−2)2 +(A+2)2−(A−2)2(A+2)2+(A−2)2 

$\Rightarrow B=\frac{2.A^2+8}{8.A}+\frac{8.A}{2.A^2+8}=\frac{\left(2A^2+8\right)^2+64.A^2}{8.A\left(2A^2+8\right)}=\frac{\left(A^2+4\right)^2+16.A^2}{4.A\left(A^2+4\right)}$⇒B=2.A2+88.A +8.A2.A2+8 =(2A2+8)2+64.A28.A(2A2+8) =(A2+4)2+16.A24.A(A2+4) 

 

2 tháng 4 2015

+) Nhận xét x = 4; x = 5 là nghiệm của phương trình. ta sẽ chứng minh pt ko còn nghiệm nào khác

+) Nếu x < 4 => x - 5 < -1 => |x - 5| > 1 => |x -5|2004 > 1 =>  |x -5|2004 +  |x -4|2005 > 1 vậy  x < 4 không là nghiêm của pt

+) Nếu x > 5 => x - 4 > 1 => |x - 4| > 1 =>  |x -4|2005 > 1 => |x -5|2004 +  |x -4|2005 > 1 vậy  x>5 không là nghiêm của pt

+) Nếu 4< x < 5 => 0< x- 4 < 1 => |x - 4|2005 < 1 

Hơn nữa, |x - 5| + |x - 4| = 5 - x + x - 4 = 1 => |x - 5| < 1 => |x - 5|2004 < 1

do đó  |x -5|2004 +  |x -4|2005 < 1 vậy   4< x < 5 không là nghiêm của pt

Vậy phương trình có đúng hai nghiệm 4 ; 5

2 tháng 4 2015

ban nêu rõ ràng viết dấu đi

2 tháng 4 2015

tong so vien bi cua 4  nguoi

16 x 4 = 64 vien

vay truoc khi duoc Tri ba ban con lai co so vien la

16 : 2 = 8 vien

so vien bi cua Tri co khi Phuoc cho  ba bn kia 

40 : 2 = 20 vien

so bi cua Hanh va Bao truoc khi duoc Tri cho

8 : 2 = 4 vien

so bi cua Phuoc truoc khi Phuoc chia bi

64 - 4 x2 - 20 = 36 vien

so vien bi cua Phuoc truoc khi Bao chia cho cac ban

36 : 2 = 18 vien

so bi cua Tri truoc khi Bao cho

20 : 2  = 10 vien

so bi cua Hanh truoc khi Bao cho 

4 : 2 = 2 vien

so bi cua Bao truoc khi bao chia cho cac ban

64 - 2- 10 - 18 =34 vien

so bi cua Phuoc truoc khi Hanh cho

18 : 2 = 9 vien

so bi cua Tri truoc khi Hanh cho

10 : 2 = 5 vien

so bi cua  Bao truoc khi Hanh cho

34 : 2 = 17 vien

so bi cua Hanh truoc khi Hanh cho cac ban 

64 - 5 - 9 - 17 =33 vien

dap so Hanh 33 vien

          Tri 5 vien

          Bao 17 vien

          Phuoc 9 vien  

Ko biet co dung khong

1 tháng 4 2015

(1+1/3)(1+1/8)(1+1/15)...(1+1/9603)=4/3 . 9/8 . 16/15 ... 9604/9603

                                                   = (2.2)/(1.3) . (3.3)/(2.4) . (4.4)/(3.5) ... (98.98)/(97.99)

                                                   =(2.2.3.3.4.4...98.98)/(1.3.2.4.3.5...97.99)

                                                   =(2.3.4...98)/(1.2.3...97) . (2.3.4..98)/(3.4.5...99)

                                                   =98/1 .2/99 =169/99 .         

1 tháng 4 2015

đây là toán 6 thì đúng hơn

31 tháng 3 2015

1) \(VT=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{x}{x}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{y}+\frac{y}{z}+\frac{x}{z}+\frac{y}{z}+\frac{z}{z}\)

\(=3+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)\)

Với 2 số a; b dương dễ dàng chứng minh đc: \(\frac{a}{b}+\frac{b}{a}\ge2\) (có thể chứng minh tương đương)

=>  VT \(\ge3+2+2+2=9=VP\)=> ĐPCM

dâu = xảy ra khi x = y = z

2) Xét \(M+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

\(M+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(M+3=\frac{1}{2}.\left(2a+2b+2c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(M+3=\frac{1}{2}.\left(\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{1}{2}.9=\frac{9}{2}\)(Áp dụng câu 1)

=> M \(\ge\frac{9}{2}-3=\frac{3}{2}\)

min M = 3/2 khi a= b = c

31 tháng 3 2015

A = x(x-1)(x-7)(x-8) = [x.(x- 8)].[(x - 1)(x - 7)] = (x2 - 8x).(x2 - 8x + 7) = (x2 - 8x)2 + 7(x2 - 8x)

Đặt a = x2 - 8x => A = a2 + 7a

để A là số chính phương thì A = b2 (b nguyên)

=> a2 + 7a = b2 => 4a2 + 28a + 49 - 49 - 4b2 = 0 => (2a+ 7)2 - (2b)2 = 49

=> (2a + 7 - 2b).(2a + 7 + 2b) = 49

Vì a, b nguyên nên 2a+ 7 - 2b ; 2a + 7 + 2b thuộc Ư(49) = {49; -49; 1;-1; 7; -7}

trường hợp: 2a + 7 - 2b = 49 và 2a + 7 + 2b = 1 . Cộng vế với vế => 4a + 14 = 50 => a = 9 => b = -12 (nhận)

=> x2 - 8x = 9 =>  x2 - 8x - 9 = 0 => x = -1; 9

tương tự với các trường hợp còn lại....................................

31 tháng 3 2015

111...1222...2 = 111...1. 10n + 222...2 = 111...1. 10n + 2. 111...1 (n chữ số 1)

= 111...1.(10n + 2)  (n chữ số 1)

Nhận xét: 10n = 999...9 + 1 (n chữ số 9)

= 9. 111...1 + 1 

đặt a = 111...1 => 111...1222...2 = a.(9a +1 + 2) = a.(9a+ 3) = 3a(3a + 1)

hai số 3a ; 3a + 1 là số tự nhiên liên tiếp

=> đpcm

28 tháng 3 2017

mk cung the

30 tháng 3 2015

\(\sqrt{x}+\sqrt{y}=9\Rightarrow\sqrt{x}=9-\sqrt{y}\)

Vì \(\sqrt{x}\ge0\Rightarrow9-\sqrt{y}\ge0\Rightarrow\sqrt{y}\le9\)

Do x, y nguyên dương nên \(\sqrt{y}\) = 1; 2; 3; 4; 5;6;7;8

=> tương ứng y = 1;4;9;16;25;36;49;64;

=> x = 64;49;36;25;16;9;4;1

vậy....

29 tháng 3 2015

Vì abc<1000

=>a<7

=>abc<700

=> 1<=a,b,c<=5

Ta đi chứng minh trong 3 số a,b,c tồn tại một số bằng 5

Thật vậy: Giả sử cả 3 số a,b,c<=4

=>abc<=72<100 vô lí

Do đó a=5 hoặc b=5 hoặc c=5

*Nếu a=5

Ta có

500+bc=5!+b!+c!<=240+b!

=>b!+240>500

=>b!>260

=>b>5 vô lí

Nên a<=4

*Nếu b=5

Lập luận tương tự b<=4

*Nếu c=5

Tìm được a=1;b=4

Vậy…

17 tháng 3 2018

abc=100a+ 10b +c =a! +b! +c!. 
0! = 1, 2! = 2, 3!= 6, 4! = 24, 5!= 120, 6!= 720, 7! = 5040 (4 chữ số) => a; b; c <7, a khác 0 
- xét trường hợp a= 6, thì 600+ 10b+ c= 720+b! + c! <=> 10b+ c =120 +b! +c! (vô lý vì b, c <7) 
- nếu a= 5 thì 500+ 10b +c = 120 +b!+ c! [vô lý vì vt >500, vp <360 (a=5, b=5, c=5)] ( vt= vế trái, vp= vế phải) 
- nếu a= 4 thì 400+ 10b +c = 24 +b!+ c! [vô lý vì vt >400, vp < 264 (a=4, b=5, c=5)] 
- nếu a= 3 thì 300+ 10b +c = 6 +b!+ c! [vô lý vì vt >300, vp <246 (a=3, b=5, c=5) ] 
các trường hợp a=5,4,3 thì b và c không thể là số 6, giá trị lớn nhất của b và c là 5 
- nếu a= 2 thì 200+ 10b +c = 2+b!+ c! <=> 128+ 10b+ c= b! + c! => b hoậc c là 5 
+ b= 5 thì 128+ 50 +c= 120+ c! (không tồn tại c ) 
+c=5 thì 128+10b+ 5= b! +120 (không tồn tại b ) 
=> a=1 và ta có 100+ 10b+ c= 1 +b! +c! => b hoặc c là 5 
+ b=5 thì 100+ 50+ c= 1 +120 +c! ( không tồn tại c) 
+c= 5 thì 100+ 10b+ 5= 1 +b! +120 <=> 10b= 16+ b! <=> b=4 
vậy abc= 145. 
bài giải hơi dài, nhưng suy nghĩ ra nghiệm dễ vì a, b, c chạy từ 0 đến 6