K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

Ta có:

a2(b + c) = b2(a + c)

<=> a2 b - b2 a + a2 c - b2 c = 0

<=> (a - b)(ab + bc + ca) = 0

<=> ab + bc + ca = 0 (vì a,b,c khác nhau từng đôi 1)

\(\Rightarrow\hept{\begin{cases}a\left(b+c\right)+bc=0\\c\left(a+b\right)+ab=0\end{cases}}\)

Ta lại có: a2(b + c) = 2016

<=> a(-bc) = 2016

<=> - abc = 2016

Ta xét 

P = c2(a + b) = c(-ab) = - abc = 2016

6 tháng 2 2017

Không thấy ai tham gia nhỉ: Thảo luận cho vui nào?

\(\hept{\begin{cases}a^2\left(b+c\right)=2016\\b^2\left(a+c\right)=2016\\c^2\left(a+b\right)=2016\end{cases}\Rightarrow}\)có nghiệm không?

4 tháng 2 2017

a/b-c + b/c-a + c/a-b=0 =>a/b-c=-(b/c-a + c/a-b)=c/a-b - b/c-a =b/a-c + c/b-a = b2-ab+ac-c2/(a-b)(c-a)

Tương tự rồi công lại

15 tháng 4 2019

a/b-c+b/c-a+c/a-b=0

=>a/b-c= ( b/c-a+c/a-b)

=c/a-b/c-a

=b/a-c+c/b-a

=b2-ab+ac-c2/(a-b) ( c - a )

Có một ông vua già không có người kế vị. Thấy mình không còn sống được bao lâu nữa, Ông quyết định mở cuộc thi chọn Thái tử có năng lực. Có 4 chàng trai tài giỏi nhất vương quốc tới tham dự. Nhà vua tiến hành chọn như sau: -Ông bịt mắt bốn chàng trai và xếp họ ngối vào bàn tròn. Nhà vua nói: " Ta sẽ đặt lên đầu mỗi người một mũ miệng vàng hoặc bạc. Khi bỏ khăn bịt mắt ra, ai...
Đọc tiếp

Có một ông vua già không có người kế vị. Thấy mình không còn sống được bao lâu nữa, Ông quyết định mở cuộc thi chọn Thái tử có năng lực. Có 4 chàng trai tài giỏi nhất vương quốc tới tham dự. Nhà vua tiến hành chọn như sau: -Ông bịt mắt bốn chàng trai và xếp họ ngối vào bàn tròn. Nhà vua nói: " Ta sẽ đặt lên đầu mỗi người một mũ miệng vàng hoặc bạc. Khi bỏ khăn bịt mắt ra, ai nhìn thấy số miện vàng nhiều hơn miện bạc thì đứng lên và đứng đó cho đến khi có người nói được trên đầu mình mũ miện màu gì. Ai nói được sẽ là người kế vị ta. Khăn bịt mặt được bỏ ra, các chàng trai nhìn nhau và đều đứng lên. Sau một hồi, một người kêu lên: -Thưa đế vương, trên đầu con là miệng vàng Anh ta đã suy đoán đúng. Vậy nhà vua đã đặt mũ miệng gì lên đầu các chàng trai và chàng trai thông minh đó đã suy luận như thế nào?

22
2 tháng 2 2017

lay o dau ma hay vay

2 tháng 2 2017

chang trai do thay 3 nguoi kia deu doi mu bac nen anh ta suy doan ra rang la minh doi mu vang , dung khong?

k minh nhe.neu sai thi minh chiu 

31 tháng 1 2017

(Đề hay)

Đáp án là An-Như, Bình-Mị, Cảnh-Lan.

Ta sẽ CM An không cặp với Mị, và Bình thì ko cặp với Lan.

Nếu An cặp với Mị, thì gọi \(x\) là số bông Mị mua. Khi đó An chi \(\left(x+9\right)^2\) còn Mị chi \(x^2\) nên ta có pt:

\(\left(x+9\right)^2-x^2=48\). Giải thấy ko có nghiệm nguyên dương.

Tương tự, nếu Bình cặp với Lan thì có pt \(\left(x+7\right)^2-x^2=48\), cũng ko có nghiệm nguyên dương.

-----

Ta sẽ CM An ko cặp với Lan.

Giả sử điều này xảy ra. Khi đó ta có pt \(\left(x+9\right)^2-y^2=48\)

Hay \(\left(x-y+9\right)\left(x+y+9\right)=48\)

Nhận thấy số \(x+y+9>9\) nên chỉ có 2 trường hợp thoả:

\(x-y+9=1,x+y+9=48\)

và \(x-y+9=3,x+y+9=16\)

Đáng tiếc là chẳng có trường hợp nào có nghiệm nguyên hết.

Vậy trường hợp An cặp với Lan bị loại.

-----

Vậy An phải cặp với Như. Bình đã ko cặp với Lan rồi nên Bình cặp với Mị. Suy ra Cảnh cặp với Lan.

30 tháng 1 2017

cái này thì mik chịu

3 tháng 2 2017

O x y A B C D E F I H K M
Theo đề bài ta có I là trung điểm đoạn EF => I thuộc tia phân giác góc xOy => góc EOI = góc FOI
Cho H,K là chân các đường vuông góc hạ từ M xuống các tia Ox, Oy => \(MH⊥Ox;MK⊥Oy\)(1)
ta có : góc MHO = góc MKO = 900
=> tứ giác OHMK nội tiếp  => góc MOK = góc MHK(cùng chắn cung MK),góc  MOH = góc HKM (cùng chắn cung HM)
Mà góc MOK = góc MOH (cmt) nên góc MHK = góc HKM => tam giác MHK cân tại M => MH = MK (2)
Từ (1) và (2) => M thuộc đường phân giác của góc xOy
Vì I và M đều thuộc tia phân giác của góc xOy nên I,OM thẳng hàng
p/s còn nhiều cách khác .vd: (dùng hình vẽ trên) : chứng minh 2 tam giác HMO = tam giác KMO( tam giác vuông có cạnh OM chung và góc HOM = góc MOK) => MH=MK -> phần sau làm tương tự.............[cách này ngắn hơn nhưng không dùng cho lớp 9 HKII]

1 tháng 2 2017

Chưa học

29 tháng 1 2017

Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)\left(a^3-b^3\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\ge\left(a+b\right)^2a^2b^2\)\(\forall a,b>0\)

\(\Leftrightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Leftrightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)

Tương tự ta có: \(\frac{bc}{b^5+c^5+bc}\le\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\le\frac{b}{a+b+c}\)

Cộng theo vế ta có: \(VT\le\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

30 tháng 1 2017

mk có cách giải khác Lyzimi, Thắng Nguyễn và Minh Triều xem thử nha :)

\(\forall x;y>0\) ta dễ dàng chứng minh được \(x^5+y^5\ge xy\left(x^3+y^3\right)\) và \(x^3+y^3\ge xy\left(x+y\right)\)

Đẳng thức xảy ra \(\Leftrightarrow\)\(x=y\)

(cái này để chứng minh bn thử biến đổi tương đương xem sao :)

Do đó \(a^5+b^5+ab\ge ab\left(a^3+b^3+1\right)\)

\(\Rightarrow\)\(\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left(a^3+b^3+1\right)}=\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)(1)

Chứng minh tương tự \(\frac{bc}{b^5+c^5+bc}\le\frac{1}{bc\left(a+b+c\right)}\) (2) và \(\frac{ca}{c^5+a^5+ca}\le\frac{1}{ca\left(a+b+c\right)}\) (3)

Cộng (1), (2) và (3) ta có \(VT\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a+b+c}.\frac{a+b+c}{abc}=\frac{1}{abc}=1\)

Đẳng thức xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

16 tháng 1 2017

Tạm cho k=3

17 tháng 1 2017

tớ thì nghĩ k=6

19 tháng 1 2017

A B E F x y M K O

a)\(\hept{\begin{cases}Ax⊥AB\\By⊥AB\end{cases}}\)=> Ax // By.\(\Delta KFB\)có EA // FB nên\(\frac{KF}{KA}=\frac{BF}{AE}\)(hệ quả định lí Ta-lét) mà EA = EM ; FM = FB (tính chất của 2 tiếp tuyến)

\(\Rightarrow\Delta AEF\)\(\frac{KF}{KA}=\frac{MF}{ME}\)nên MK // AE (định lí Ta-lét đảo) mà\(AE⊥AB\Rightarrow MK⊥AB\)

b)\(\widehat{EOM}=\frac{\widehat{AOM}}{2};\widehat{FOM}=\frac{\widehat{MOB}}{2}\)(tính chất 2 tiếp tuyến) mà\(\widehat{EOM}+\widehat{FOM}=180^0\)(kề bù)

\(\Rightarrow\widehat{EOF}=\widehat{EOM}+\widehat{FOM}=\frac{180^0}{2}=90^0\)

\(\Rightarrow\Delta EOF\)vuông tại O có OE + OF > EF (bđt tam giác) ; OE + OF < 2EF (vì OE,OF < EF)

\(\Rightarrow1< \frac{OE+OF}{EF}< 2\Rightarrow2< \frac{P_{EOF}}{EF}< 3\Rightarrow\frac{1}{3}< \frac{EF}{P_{EOF}}< \frac{1}{2}\)(1)

Hình thang AEFB (AE // FB) có diện tích là :\(\frac{\left(AE+FB\right).AB}{2}=\frac{\left(EM+FM\right).2R}{2}=EF.R\)

SAEO = SMEO vì có đáy OA = OM ; đường cao AE = ME\(\Rightarrow S_{MEO}=\frac{1}{2}S_{AEMO}\) 

SFOM = SFOB  vì có đáy FM = FB ; đường cao OM = OB\(\Rightarrow S_{FOM}=\frac{1}{2}S_{MFBO}\)

\(\Rightarrow S_{EOF}=\frac{1}{2}\left(S_{AEMO}+S_{MFBO}\right)=\frac{EF.R}{2}\).Từ tâm đường tròn nội tiếp I của\(\Delta EOF\)kẻ các đường vuông góc với OE,OF,EF thì\(S_{EOF}=S_{EIF}+S_{EIO}+S_{OIF}\)\(\Leftrightarrow\frac{EF.R}{2}=\frac{EF.r+EO.r+OF.r}{2}\)

\(\Rightarrow EF.R=P_{EOF}.r\Rightarrow\frac{r}{R}=\frac{EF}{P_{EOF}}\)(2).Thay (2) vào (1) ta có đpcm.

19 tháng 1 2017

sao nguyên bài khó thế

15 tháng 1 2017

Đề có thể bị sai. Đề đúng có thể là

\(B=\frac{1}{1+y+yz}+\frac{2}{2+2y+xy}+\frac{2}{x+2+xz}\)

\(=\frac{1}{1+y+yz}+\frac{xyz}{xyz+xyzy+xy}+\frac{xyz}{x+xyz+xz}\)

\(=\frac{1}{1+y+yz}+\frac{z}{z+zy+1}+\frac{yz}{1+yz+z}\)

\(=\frac{1+y+yz}{1+y+yz}=1\)

15 tháng 1 2017

hình như bn nhầm kìa