tìm nghiệm nguyên dương
\(\hept{\begin{cases}x+y+z=15\\x^3+y^34+z^3=495\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\sqrt{2x^2-xy}=x-2y+1\left(1\right)\\x^2-3xy+2y^2=0\left(2\right)\end{cases}}\)
Điều kiện bạn tự làm nhé.
Xét PT (2) ta có
\(x^2-3xy+2y^2=0\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(-2xy+2y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\x=2y\end{cases}}\)
Thế x = y vào PT (1) ta được
\(\sqrt{2x^2-x^2}=x-2x+1\)
\(\Leftrightarrow\sqrt{x^2}=1-x\left(0\le x\le1\right)\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=y=\frac{1}{2}\)
Tương tự cho trường hợp còn lại. Nhớ đối chiếu điều kiện để chọn nghiệm.
mẫu các phân số này có dạng a4 + 4 = a4 + 4a2 + 4 - 4a2 = (a2 - 2a + 2)(a2 + 2a + 2)
do đó các phân số sẽ biến đổi như sau:
\(\frac{a}{4+a^4}=\frac{a}{\left(a^2-2a+2\right)\left(a^2+2a+2\right)}=\frac{1}{4}\frac{4a}{\left(a^2-2a+2\right)\left(a^2+2a+2\right)}\)
\(=\frac{1}{4}\left(\frac{1}{a^2-2a+2}-\frac{1}{a^2+2a+2}\right)\)
do đó biểu thức M = \(\frac{1}{4}\left(\frac{1}{1}-\frac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\frac{n^2}{4n^2+1}\)
Câu 1/
\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\left(1\right)\\3xy-x-y=1\left(2\right)\end{cases}}\)
Xét PT (2) ta có:
\(\left(2\right)\Leftrightarrow3xy-y=1+x\)
\(\Leftrightarrow y=\frac{1+x}{3x-1}\)
\(\Leftrightarrow y+1=\frac{4x}{3x-1}\)
\(\Leftrightarrow\frac{x}{y+1}=\frac{3x-1}{4}\left(3\right)\)
Ta lại có:
\(y=\frac{1+x}{3x-1}\)
\(\Leftrightarrow\frac{y}{x+1}=\frac{1}{3x-1}\left(4\right)\)
Từ PT (1) ta có
\(\left(1\right)\Leftrightarrow\left(\frac{3x-1}{4}\right)^2+\left(\frac{1}{3x-1}\right)^2=\frac{1}{2}\)
\(\Leftrightarrow9x^4-12x^3-2x^2+4x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(3x+1\right)^2=0\)
Làm tiếp nhé
Câu 2/
a/ \(x^2-1=3\sqrt{3x+1}\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(3\sqrt{3x+1}\right)^2\)
\(\Leftrightarrow x^4-2x^2-27x-8=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+3x+8\right)=0\)
Tới đây thì đơn giản rồi nhé
b/ \(\sqrt{2-x}+\sqrt{2+x}+\sqrt{4-x^2}=2\)
Đặt \(\hept{\begin{cases}\sqrt{2-x}=a\\\sqrt{2+x}=b\end{cases}\left(a,b\ge0\right)}\)
Thì ta có:
\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-2ab=4\\\left(a+b\right)+ab=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=2\\ab=0\end{cases}}\) hoặc \(\hept{\begin{cases}a+b=-4\\ab=6\end{cases}\left(l\right)}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2-x}+\sqrt{2+x}=2\\\sqrt{4-x^2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
PS: Điều kiện xác định bạn tự làm nhé
Từ đề bài đẽ thấy
\(x-y=x^3+y^3>0\)
\(\Rightarrow x>y\)
Giả sử \(x^2+y^2\ge1\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)\ge x-y=x^3+y^3\)
\(\Leftrightarrow y\left(2y^2-xy+x^2\right)\le0\) (sai vì \(\hept{\begin{cases}y>0\\2y^2-xy+x^2>0\end{cases}}\))
Vậy \(x^2+y^2< 1\)
a. Tứ giác CEHD có \(\widehat{HEC}=\widehat{HDC}=90^o\Rightarrow\) nó là tứ giác nội tiếp.
b. Tứ giác BFEC có \(\widehat{BEC}=\widehat{BFC}=90^o\Rightarrow\)nó là tứ giác nội tiếp. Vậy 4 điểm B, C, E, F cùng thuộc một đường tròn.
c. Ta thấy \(\Delta HAE\sim\Delta CAD\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AE}{AD}\Rightarrow AE.AC=AH.AD\)
Ta thấy \(\Delta CBE\sim\Delta CAD\left(g-g\right)\Rightarrow\frac{BC}{AC}=\frac{BE}{AD}\Rightarrow AD.BC=BE.AC\)
d. Ta thấy ngay \(\widehat{PCB}=\widehat{BAM}\) (Cùng phụ với góc ABC)
Mà \(\widehat{BAM}=\widehat{BCM}\) (Góc nội tiếp cùng chắn cung BM)
Vậy nên \(\widehat{PCB}=\widehat{BCM}\) hay CM là phân giác góc \(\widehat{PCB}\)
Lại có \(CM⊥HD\) nên HCM là tam giác cân. Vậy CB là trung trực của HM hay H, M đối xứng nhau qua BC.
e. Ta thấy BFHD là tứ giác nội tiếp nên \(\widehat{FDH}=\widehat{FBH}\) (Góc nội tiếp cùng chẵn cung FH)
DHEC cùng là tứ giác nội tiếp nên \(\widehat{HDE}=\widehat{HCE}\) (Góc nội tiếp cùng chẵn cung HE)
Mà \(\widehat{FBH}=\widehat{HCE}\) ( Cùng phụ với góc \(\widehat{BAC}\) )
nên \(\widehat{FDH}=\widehat{HDE}\) hay DH là phân giác góc FDE.
Tương tự FH, EH cũng là phân giác góc DFE và DEF.
Vậy tâm đường tròn nội tiếp tam giác DEF chính là H.
Đặt: y + z = a thì ta có
\(x\le2a\)
Từ đề bài thì ta có thể suy ra
\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)
\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)
\(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)
Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}\)\(=\frac{1}{2\sqrt{bc}}\)
Tương tự cho 2 BĐT còn lại ta có:
\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Theo AM-GM có
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì
\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=b=c=1\)
từ GT suy ra abc >=1 và a/bc + b/ca + c/ab = 3.
áp dụng BĐT Cauchy : a4 + bc >=2a2v(bc) (v(bc) là căn bc).
nên a2/a4 + bc <=1/2v(bc).
do đó M <= 1/2.(1/v(bc) + 1/v(ca) + 1/v(ab).
ta chứng minh N = (1/v(bc) + 1/v(ca) + 1/v(ab) <=3 là xong.
thật vậy.
giả sử a <=b<=c nên 1/v(bc) <= 1/v(ca)<= 1/v(ab).
áp dụng BĐT Trê bư sep ta được (v(a) + v(b) + v(c))/3 . ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= (v(a)/v(bc) + v(b)/v(ca) + v(c)/v(ab)/3.
ta có v(a) + v(b) + v(c) >=3 căn6(abc)>=3.
nên VT >=((1/v(bc) + 1/v(ca) + 1/v(ab))/3. (1)
lại có (x + y + z)2 <=3(x2 + y2 + z2) nên (VP)2 <= (a/bc + b/ca + c/ab)/3= 1.
hay VP <= 1 (2).
từ (1) và (2) suy ra ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= 1 hay
(1/v(bc) + 1/v(ca) + 1/v(ab) <= 3
tức N <= 3 (đpcm).
(mình chưa biết đánh nên cố đọc nhé!)
Sửa đề: \(\hept{\begin{cases}x+y+z=15\\x^3+y^3+z^3=495\end{cases}}\)
Không mất tính tổng quát ta giả sử: \(x\ge y\ge z>0\)
\(\Rightarrow15=x+y+z\ge3z\)
\(\Leftrightarrow0< z\le5\)
Với \(z=1\) thì ta có
\(\hept{\begin{cases}x+y=14\\x^3+y^3=494\end{cases}}\) hệ này vô nghiệm
Tương tự cho các trường hợp còn lại ta sẽ tìm được nghiệm.