Có thể có hay không một tam giác có tổng 3 đường cao nhỏ hơn 1mm nhưng diện tích lại lớn hơn diện tích Trái đất (lớn hơn 510 triệu kilômét vuông)? Vì sao thế nhỉ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 25 con bò ăn trong 9 ngày và 20 con bò ăn trong 8 ngày.
25 con bò + 20 con bò = 45 con bò
Do vậy ta sẽ trừ số ngày của 20 con bò và 25 con bò => 8 ngày - 6 ngày= 2 ngày
Vậy 45 con bò ăn trong 2 ngày
\(S=\left(12^2+14^2+...+19^2+20^2\right)-\left(1^2+3^2+...+9^2\right)\)
\(S=\left(2^2+4^2+...+10^2\right)+\left(12^2+14^2+...+20^2\right)-\left(1^2+3^2+...+9^2\right)-\left(2^2+4^2+...+10^2\right)\)
\(S=\left(1^2+2^2+3^2+...+10^2\right).2^2-\left(1^2+2^2+3^2+...+10^2\right)\)
\(\Leftrightarrow\)\(S=385.4-385\)
\(\Rightarrow\)\(S=1155\)
S= (12^2-1^2)+(14^2 -3^2)+(16^2-5^2) +( 18^2-7^2) + ( 20^2 -9^2)
S=11^2+11^2+11^2+11^2 +11^2
S= 605
Theo mình nghĩ X=2 ,Y=1 , vì thay vào 1+3 =4 chia hết cho 2, và 2+2=4 chia het cho 1 , hãy tin vao mình :)))
Để (ax3 + bx2 + cx + d) chia hết cho 5 thì
ax3 chia hết cho 5
và bx2 chia hết cho 5
và cx chia hết cho 5
và ax3 chia hết cho 5 (dùng ngoặc và)
=> a,b,c,d đề phải chia hết cho 5
theo tôi là vậy
ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)
=> ax^3 chia hết cho 5
bx^2 chia hết cho 5
cx chia hết cho 5
d chia hết cho 5
=>a,b,c,d đều chia hết cho 5
Gọi chữ số nhỏ nhất là a => số có 3 chữ số là a, 2a, 3a với 3a ≤ 9 => a ≤ 3. Do số cần tìm chia hết cho 18, tức chia hết cho 9 nên (a + 2a + 3a) = 6a chia hết cho 9 => a chia hết cho 3, vậy a = 3 => 3 chữ số là 3, 6, 9
Số cần tìm là số chẵn do chia hết cho 2 vậy chữ số cuối là 6
=> số cần tìm là 396 hoặc 936
Giả sử chỉ có hữu hạn số nguyên tố là p1, p2, ..., pn trong đó pn là số lớn nhất trong các số nguyên tố.
Xét số A = p1p2 ... pn +1 thì A chia cho mỗi số nguyên tố pk (1=<k=<n) đều dư 1 (1).
Mặt khác A là hợp số ( vì nó lớn hơn số nguyên tố lớn nhất là pn) do đó A phải chia hết cho một số nguyên tố nào đó, tức là A chia hết cho một trong các số pk, mâu thuẫn với (1).
Vậy không có hữu hạn số nguyên tố.
tớ biết tớ ....................................................................chết liền!