chứng minh rằng không có các số nguyên x, y ,z nào thỏa mãn |x - y| + | y - z| + | z - x| =2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{2^2}{\left(2-1\right)\left(2+1\right)}+\frac{3^2}{\left(3-1\right)\left(3+1\right)}+...+\frac{2008^2}{\left(2008-1\right)\left(2008+1\right)}\)
\(S=\frac{2^2}{2^2-1}+\frac{3^2}{3^2-1}+...+\frac{2008^2}{2008^2-1}=\frac{2^2-1+1}{2^2-1}+\frac{3^2-1+1}{3^2-1}+...+\frac{2008^2-1+1}{2008^2-1}\)
\(S=1+\frac{1}{1.3}+1+\frac{1}{2.4}+...+1+\frac{1}{2007.2009}=\left(1+1+...+1\right)+\left(\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{2007.2009}\right)\)Tính \(A=\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{2007.2009}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{2007.2009}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2009}\right)=\frac{1}{2}.\left(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)-\left(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)\right)\)
\(A=\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{2008}-\frac{1}{2009}\right)=...\)
Vậy \(S=2007+A=...\)
cau ve so do cua 2 so sau khi chuyen . roi cau se hieu
xy+yz+xz=2xyz
<=>(xy+yz+xz)/(xyz)=2xyz/(xyz)
<=>1/z+1/x+1/y=2 (1)
Giả sử x<hoặc=y<hoặc=z
=>1/x>hoặc bằng 1/y>hoặc bằng 1/z
=>1/x+1/x+1/x>hoặc=2
=>3/x>=2
Mà x thuộc N*
=>x=<1
=>x=1
Thay vào (1),ta được:
1/z+1+1/y=2
=>1/y+1/z=1 (2)
=>1/y+1/y>=1
=>2/y>=1
=>y=<2
=>y=2 hoặc y=1
+ y=1
Thay vào (2)
1/1+1/z=1
=>1/z=0 (loại)
+ y=2
Thay vào (2)
1/2+1/z=1
=>z=2 (thỏa mãn)
Vậy (x;y;z)=(1;2;2)và các hoán vị của chúng
Do ABD và ACE đều nên góc A1 = góc A3 = 600
\(\Rightarrow A_1+A_2=A_3+A_2\)
\(\Rightarrow DAC=BAE\)
Do đó: \(\Delta DAC=\Delta BAE\) (c.g.c)
Suy ra: góc D1 = góc B1
Xét \(\Delta DNA\) và \(\Delta BNM\) có:
+ Góc D1 = góc B1(CM trên)
+ Góc N1 = góc N2 (đối đỉnh)
Suy ra góc A1 = góc M1 = 600
Góc M2 kề bù với M1 nên M2 + M1 = 1800
Suy ra góc M1 = 1200 (đpcm)
sai rùi !
người ta bảo chứng minh góc BMC=120 độ chứ có phải BMD đâu
|x-1|- 3|x+1| = 2 (1)
|x - 1| = x-1 khi x \(\ge\)1 và = -(x -1) khi x < 1
|x + 1| = x+ 1 khi x \(\ge\) -1 và = - (x+1) khi x < -1
Trường hợp 1: Khi x \(\ge\) 1 thì |x - 1| = x - 1 và |x + 1| = x + 1
(1) <=> x - 1 - 3(x + 1) = 2 => x - 1 - 3x - 3 = 2 => -2x - 4 = 2 => -6 = 2x => x = -3 loại
TH2: Khi x < -1 thì |x - 1| = -(x-1) và |x + 1| = - (x +1)
(1) <=> -(x-1) +3(x+1) = 2 => -x +1 + 3x + 3 = 2 => 2x = -2 => x = -1 loại
TH3: -1 \(\le\) x < 1 thì |x - 1| = - (x-1) và |x+1| = x+1
(1) <=> -(x-1)-3(x+1) = 2 => -x +1 - 3x - 3 = 2 => -4x -2 = 2 => x = -1 thoả mãn
Kết hợp cả 3 trường hợp => x = -1
Ta có nhận xét sau : |x - y| và (x - y) có cùng tính chẵn lẻ
Mà (x - y) và (x + y) có cùng tính chẵn lẻ nên |x - y| và (x + y) có cùng tính chẵn lẻ
Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x)
mà (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x| là số chẵn . Vậy |x - y| + |y - z| + |z - x| = 2013 không xảy ra nhé
Ta có nhận xét sau : |x - y| và (x - y) có cùng tính chẵn lẻ
Mà (x - y) và (x + y) có cùng tính chẵn lẻ nên |x - y| và (x + y) có cùng tính chẵn lẻ
Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x)
mà (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x| là số chẵn . Vậy |x - y| + |y - z| + |z - x| = 2013 không xảy ra.