K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
28 tháng 6 2021

\(P=\left(1+2a\right)\left(1+2bc\right)\le\left(1+2a\right)\left(1+b^2+c^2\right)=\left(1+2a\right)\left(2-a^2\right)\)

\(=\frac{3}{2}\left(\frac{2}{3}+\frac{4}{3}a\right)\left(2-a^2\right)\le\frac{3}{8}\left(\frac{8}{3}+\frac{4}{3}a-a^2\right)^2=\frac{3}{8}\left[\frac{28}{9}-\left(a-\frac{2}{3}\right)^2\right]^2\)

\(\le\frac{3}{8}.\left(\frac{28}{9}\right)^2=\frac{98}{27}\)

Dấu \(=\)khi \(\hept{\begin{cases}b=c\\\frac{2}{3}+\frac{4}{3}a=2-a^2,a-\frac{2}{3}=0\\a^2+b^2+c^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2}{3}\\b=c=\frac{\sqrt{\frac{5}{2}}}{3}\end{cases}}\).

Vậy \(maxP=\frac{98}{27}\).

28 tháng 6 2021

Ta co : \(P=2a+2bc+2abc+1\)

Ap dung bdt Co-si : \(P\le a^2+b^2+c^2+2abc+2=2abc+3\)

Tiep tuc ap dung Co-si : \(1=a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}< =>\sqrt[3]{a^2b^2c^2}\le\frac{1}{3}\)

\(< =>a^2b^2c^2\le\frac{1}{27}< =>abc\le\frac{1}{\sqrt{27}}\)

Khi do : \(2abc+3\le2.\frac{1}{\sqrt{27}}+3=\frac{2}{\sqrt{27}}+3\)

Suy ra \(P\le a^2+b^2+c^2+2abc+2\le\frac{2}{\sqrt{27}}+3\)

Dau "=" xay ra khi va chi khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Vay Max P = \(\frac{2}{\sqrt{27}}+3\)khi a = b = c = \(\frac{1}{\sqrt{3}}\) 

p/s : khong biet dau = co dung k nua , minh lam bay do

DD
26 tháng 6 2021

Trước tiên ta sẽ chứng minh \(\sqrt{2}\)là số vô tỉ. 

Giả sử \(\sqrt{2}\)là số hữu tỉ. 

Khi đó \(\sqrt{2}=\frac{m}{n}\left(m,n\inℤ,\left(m,n\right)=1\right)\)

\(\Leftrightarrow m^2=2n^2\)

Suy ra \(m^2⋮2\Rightarrow m⋮2\Rightarrow m=2k\)

\(4k^2=2n^2\Leftrightarrow n^2=2k^2\)từ đây cũng suy ra \(n⋮2\)

Khi đó \(m,n\)cùng chia hết cho \(2\)(mâu thuẫn với \(\left(m,n\right)=1\))

Do đó ta có đpcm: \(\sqrt{2}\)là số vô tỉ. 

Giả sử \(\sqrt{1+\sqrt{2}}\)là số hữu tỉ. 

Khi đó \(\sqrt{1+\sqrt{2}}=\frac{a}{b},\left(a,b\inℤ\right)\)

\(\Leftrightarrow1+\sqrt{2}=\frac{a^2}{b^2}\)

\(\Leftrightarrow\sqrt{2}=\frac{a^2}{b^2}-1\)là số hữu tỉ. 

Mà \(\sqrt{2}\)là số vô tỉ do đó mâu thuẫn nên ta có đpcm. 

25 tháng 6 2021

bài này chỉ cần cm căn 2 là số vô tỉ => đpcm

DD
23 tháng 6 2021

\(2021n-19\equiv21n+21\left(mod40\right)\)suy ra ta cần chứng minh \(n+1⋮40\)(vì \(\left(21,40\right)=1\)).

Đặt \(m=n+1\). Ta sẽ chứng minh \(m⋮40\).

Đặt \(2m+1=a^2,3m+1=b^2\).

\(2m+1\)là số lẻ nên \(a\)là số lẻ suy ra \(a=2k+1\).

\(2m+1=\left(2k+1\right)^2=4k^2+4k+1\Rightarrow m=2\left(k^2+k\right)\)nên \(m\)chẵn. 

do đó \(3m+1\)lẻ nên \(b\)lẻ suy ra \(b=2l+1\).

\(3m+1=4l^2+4l+1\Leftrightarrow3m=4l\left(l+1\right)\)có \(l\left(l+1\right)\)là tích hai số nguyên liên tiếp nên chia hết cho \(2\)do đó \(4l\left(l+1\right)\)chia hết cho \(8\)suy ra \(m⋮8\)vì \(\left(3,8\right)=1\).

Giờ ta sẽ chứng minh \(m⋮5\).

Nếu \(m=5p+1\)\(2m+1=10p+3\)có chữ số tận cùng là \(3\)nên không là số chính phương.

Nếu \(m=5p+2\)\(3m+1=15m+7\)có chữ số tận cùng là \(7\)nên không là số chính phương. 

Nếu \(m=5p+3\)\(2m+1=10m+7\)có chữ số tận cùng là \(7\)nên không là số chính phương. 

Nếu \(m=5p+4\)\(3m+1=15m+13\)có chữ số tận cùng là \(3\)nên không là số chính phương. 

Do đó \(m=5p\Rightarrow m⋮5\).

Có \(m⋮8,m⋮5\)mà \(\left(5,8\right)=1\)suy ra \(m⋮\left(5.8\right)\Leftrightarrow m⋮40\).

Ta có đpcm. 

24 tháng 6 2021

méo biêt

DD
22 tháng 6 2021

Dựng hình bình hành \(ABEC\).

Khi đó \(E\in DC\).

Vì \(BD\perp AC\)mà \(AC//BE\)nên \(BE\perp BD\).

Kẻ \(BH\perp DE\)

Xét tam giác \(BED\)vuông tại \(B\)đường cao \(BH\)

\(\frac{1}{BH^2}=\frac{1}{BD^2}+\frac{1}{BE^2}\Leftrightarrow\frac{1}{4^2}=\frac{1}{5^2}+\frac{1}{BE^2}\Leftrightarrow BE=\frac{20}{3}\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.BD.BE=\frac{1}{2}.5.\frac{20}{3}=\frac{50}{3}\left(cm^2\right)\)

Có ai biết đổi tên cho mình hông?

DD
22 tháng 6 2021

Tổng quát: 

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Suy ra: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

\(A=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 1+2\left(\sqrt{2}-\sqrt{1}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=1+2\left(\sqrt{100}-\sqrt{1}\right)=19\)

\(A=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=2\left(\sqrt{100}-\sqrt{1}\right)=18\)

Do đó ta có đpcm. 

DD
21 tháng 6 2021

Xét tam giác \(BGA\)vuông tại \(G\)

\(BA^2=BG^2+GA^2=\frac{4}{9}\left(BE^2+AM^2\right)\Leftrightarrow BE^2+\frac{BC^2}{4}=\frac{27}{2}\)(1)

Xét tam giác \(ABE\)vuông tại \(A\)

\(BE^2=AB^2+AE^2=6+\frac{1}{4}AC^2\)(2)

Từ (1) và (2) suy ra \(BC^2+AC^2=30\)

mà \(BC^2=AC^2+6\)

suy ra \(BC^2=18\Rightarrow BC=3\sqrt{2}\left(cm\right)\).

DD
20 tháng 6 2021

ĐK: \(y\ne0,xy\ge0\).

\(4x^2+9y^2=16xy\)

Chia cả hai vế cho \(y^2\)ta được: 

\(4\left(\frac{x}{y}\right)^2+9=\frac{16x}{y}\)

\(\Leftrightarrow\frac{x}{y}=\frac{4\pm\sqrt{7}}{2}\)

Với \(y>0\)thì \(x\ge0\)

\(P=\frac{\sqrt{xy}+\sqrt{y^2}}{y}-\sqrt{\frac{x}{y}}=\frac{\sqrt{x}\sqrt{y}+y}{y}-\sqrt{\frac{x}{y}}=\sqrt{\frac{x}{y}}+1-\sqrt{\frac{x}{y}}=1\)

Với \(y< 0\)thì \(x\le0\):

\(P=\frac{\sqrt{xy}+\sqrt{y^2}}{y}-\sqrt{\frac{x}{y}}=\frac{\sqrt{-x}\sqrt{-y}-y}{y}-\sqrt{\frac{x}{y}}=-\sqrt{\frac{x}{y}}-1-\sqrt{\frac{x}{y}}=-2\sqrt{\frac{x}{y}}-1\)

\(=-2\sqrt{\frac{4\pm\sqrt{7}}{2}}-1=-\left(1\pm\sqrt{7}\right)-1=-2\pm\sqrt{7}\)

20 tháng 6 2021

+) Xét n≥27n≥27

Ta có : A=427+42016+4n=427⋅(1+41989+4n−27)A=427+42016+4n=427⋅(1+41989+4n−27)

Dễ thấy 427=22⋅27=(227)2427=22⋅27=(227)2 là số chính phương

Do đó để A là số chính phương thì 1+41989+4n−271+41989+4n−27 là số chính phương

Đặt B2=1+41989+4n−27B2=1+41989+4n−27 và n−27=kn−27=k

Khi đó : B2=1+41989+4kB2=1+41989+4k

⇔B2−(2k)2=1+41989⇔B2−(2k)2=1+41989

⇔(B−2k)(B+2k)=1+41989⇔(B−2k)(B+2k)=1+41989

Ta có : B+2k≤1+41989B+2k≤1+41989 và B−2k≥1B−2k≥1

⇒B−2k+41989≥1+41989≥B+2k⇒B−2k+41989≥1+41989≥B+2k

Hay B−2k+41989≥B+2kB−2k+41989≥B+2k

⇔2⋅2k≤41989⇔2⋅2k≤41989

⇔2k+1≤23978⇔2k+1≤23978

⇔k+1≤3978⇔k+1≤3978

⇔k≤3977⇔k≤3977

Để n lớn nhất thì k lớn nhất,nên:

Nếu k=3977k=3977 ta có B2=1+41989+43977B2=1+41989+43977

⇔B2=(23977)2+2⋅23977+1⇔B2=(23977)2+2⋅23977+1

⇔B2=(23977+1)2⇔B2=(23977+1)2( đúng )

Vậy k=3977⇒n=3977+27=4004k=3977⇒n=3977+27=4004( thỏa )

+) Xét n≤27n≤27 nên hiển nhiên n≤4004n≤4004

Suy ra n lớn nhất để A là số chính phương thì n=4004

Nếu thấy đúng thì k cho mình nha

DD
20 tháng 6 2021

\(A=4^{27}+4^{2016}+4^n\)

Với \(n\ge27\)

\(A=4^{27}\left(1+4^{1989}+4^{n-27}\right)\)

\(A\)là số chính phương suy ra ​\(B=4^{n-27}+4^{1989}+1\)là số chính phương.​

\(B=\left(2^{n-27}\right)^2+2^{3978}+1\)

\(=\left(2^{3977+n-4004}\right)^2+2.2^{3977}+1\)

Với \(n=4004\)thì: 

\(B=\left(2^{3977}\right)^2+2.2^{3977}+1=\left(2^{3977}+1\right)^2\)là số chính phương. 

Với \(n>4004\)thì: 

\(B>\left(2^{3977+n-4004}\right)^2\)

\(B< \left(2^{3977+n-4004}\right)^2+2.2^{3977+n-4004}+1\)

\(=\left(2^{3977+n-4004}+1\right)^2\)

Suy ra \(\left(2^{3977+n-4004}\right)^2< B< \left(2^{3977+n-4004}+1\right)^2\)do đó \(B\)không là số chính phương. 

Vậy giá trị lớn nhất của \(n\)là \(4004\).

DD
20 tháng 6 2021

\(n^2+2n+\sqrt{n^2+2n+18}+9\)là số chính phương thì \(\sqrt{n^2+2n+18}\)là số tự nhiên.

Khi đó \(n^2+2n+18=m^2\)

\(\Leftrightarrow\left(m-n-1\right)\left(m+n+1\right)=1.17\)

Do \(m,n\)là số tự nhiên nên 

\(\hept{\begin{cases}m-n-1=1\\m+n+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=7\end{cases}}\)

Với \(n=7\)thì \(n^2+2n+\sqrt{n^2+2n+18}+9=7^2+2.7+\sqrt{7^2+2.7+18}+9\)

\(=81=9^2\)là số chính phương (thỏa mãn).

Vậy \(n=7\).

DD
18 tháng 6 2021

\(2\ge2x+3y\ge2\sqrt{2x.3y}\Rightarrow xy\le\frac{1}{6}.\)

\(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{26}{3xy}\ge\frac{\left(2+2\right)^2}{4x^2+9y^2+12xy}+\frac{26}{3xy}\)

\(\ge\frac{4^2}{2^2}+\frac{26}{3.\frac{1}{6}}=56\)

Dấu \(=\)khi \(\hept{\begin{cases}\frac{2}{4x^2+9y^2}=\frac{2}{12xy}\\2x=3y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)

20 tháng 6 2021

Áp dụng bất đẳng thức Cô – si cho hai số dương, ta có: 2x + 3y ≥ 2

⇔ 2 ≤ 2x + 3y

Mà 2x + 3y ≤ 2

Do đó  ≤ 1 6xy ≤ 1. Kết hợp kết quả ở câu 1 ta có:

A =  = 4( ) +  ≥  4 +  = 16 ≥ 16. = 56

Dấu “ = “ xảy ra ⇔ ⇔ 

Vậy giá trị nhỏ nhất của biểu thức A là 56.