cho hình thang ABCD (AB//CD), hai đường chéo AC và BD cắt nhau tại O.một đường thẳng d qua O song song với 2 đáy cắt 2 cạnh bên AD,BC lần lượt tại E và F. CMR:\(\frac{1}{AB}\)+\(\frac{1}{CD}\)=\(\frac{2}{EF}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=\sqrt{x+2}+\sqrt{4-x}\)
\(\Leftrightarrow P^2=\left(\sqrt{x+2}+\sqrt{4-x}\right)^2\) , áp dụng bất đẳng thức Bunyakovsky ta có:
\(P^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x+2}\right)^2+\left(\sqrt{4-x}\right)^2\right]\)
\(=2\left(x+2+4-x\right)=2\cdot6=12\)
\(\Rightarrow P\le2\sqrt{3}\)
Dấu "=" xảy ra khi: \(x+2=4-x\Leftrightarrow x=1\)
Vậy \(Max\left(P\right)=2\sqrt{3}\Leftrightarrow x=1\)
\(0.x=0\)
\(\Leftrightarrow x=0\)
\(0.x=3\)
=> Không có x thỏa mãn, phương trình vô nghiệm
a, \(A=\left(\frac{3}{x^3+x}-\frac{4}{x^2+1}\right):\frac{1}{x}\)ĐKXĐ : \(x\ne0\)
\(=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4x}{x\left(x^2+1\right)}\right)x=\frac{3-4x}{x\left(x^2+1\right)}.x\)
\(=\frac{3x-4x^2}{x\left(x^2+1\right)}=\frac{x\left(3-4x\right)}{x\left(x^2+1\right)}=\frac{3-4x}{x^2+1}\)
b, Theo bài ra ta có : \(\left|x-2\right|=2\)
\(\Leftrightarrow x-2=\pm2\Leftrightarrow x=4;0\)
Thay x = 0 vào phân thức trên : \(\frac{3-4.0}{0^2+1}=\frac{3}{1}=3\)( ktm vì ĐKXĐ : x khác 0 )
Thay x =4 vào phân thức trên : \(\frac{3-4.4}{4^2+1}=\frac{3-16}{16+1}=\frac{-13}{17}\)
Vậy \(A=-\frac{13}{17}\)
a) ĐKXĐ : x3 + x \(\ne0\)
=> x(x2 + 1) \(\ne0\)
=> \(\hept{\begin{cases}x\ne0\\x^2+1\ne0\end{cases}}\)
\(A=\left(\frac{3}{x^3+x}-\frac{4}{x^2+1}\right):\frac{1}{x}=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4}{x^2+1}\right):\frac{1}{x}\)
\(=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4x}{x\left(x^2+1\right)}\right).x=\frac{\left(3-4x\right).x}{x\left(x^2+1\right)}=\frac{3-4x}{x^2+1}\)
b) Khi |x - 2| = 2
=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Khi x = 0 => A = \(\frac{3-4.0}{0^2+1}=\frac{-1}{1}=-1\)
Khi x = 4 => A = \(\frac{3-4.4}{4^2+1}=\frac{3-16}{16+1}=\frac{-13}{17}\)
a, \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Leftrightarrow156-56x=24x-324\)
\(\Leftrightarrow-80x+480=0\Leftrightarrow x=-6\)
b, \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x-12\right)+1\)
\(\Leftrightarrow15x+25-8x+12=5x+6x-36+1\)
\(\Leftrightarrow7x+37=11x-35\)
\(\Leftrightarrow-4x+72=0\Leftrightarrow x=18\)
c, \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-2x-1=12x-5\)
\(\Leftrightarrow-14x+4=0\Leftrightarrow x=\frac{2}{7}\)
d, \(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)
\(\Leftrightarrow5x-3\left[4x-15x+6\right]=182\)
\(\Leftrightarrow5x-3\left(-11x+6\right)=182\)
\(\Leftrightarrow5x+33x-18-182=0\)
\(\Leftrightarrow38x-200=0\Leftrightarrow x=\frac{100}{19}\)
\(\left(\frac{x}{2}+1\right)^3-\frac{x^3}{2}-4=0\)
kĩ thuật nhân thêm 2 :
\(2\left(\frac{x}{2}+1\right)^3-\frac{x^3}{2}-8=0\)
\(\Leftrightarrow\frac{x^3}{4}+x^2+x+\frac{x^2}{2}+2x+2-x^3-8=0\)
\(\Leftrightarrow\frac{-3x^3}{4}+\frac{3x^2}{2}+3x-6=0\)
\(\Leftrightarrow-3\left(\frac{x^3}{4}-\frac{x^2}{2}-x+2\right)=0\)
\(\Leftrightarrow\frac{x^3-2x^2-4x+8}{4}=0\Leftrightarrow x^3-2x^2-4x+8=0\)
\(\Leftrightarrow x^2\left(x-2\right)-4\left(x-2\right)=0\Leftrightarrow\left(x+2\right)\left(x-2\right)^2=0\Leftrightarrow x=\pm2\)
Vậy tập nghiệm phương trình là S = { -2 ; 2 }
Ta có AB//CD (2 đáy của hình thang ABCD)
\(\Rightarrow\frac{OA}{OD}=\frac{OB}{OC}=\frac{AB}{CD}\Rightarrow\frac{OA}{OA+AD}=\frac{OB}{OB+BC}=\frac{AB}{CD}\)
Từ \(\frac{OA}{OA+AD}=\frac{AB}{CD}\Rightarrow\frac{OA}{OA+9}=\frac{12}{30}\Rightarrow AO=6cm\)
Từ \(\frac{OB}{OB+BC}=\frac{AB}{CD}\Rightarrow\frac{OB}{OB+15}=\frac{12}{30}\Rightarrow OB=10cm\)
Dựng đường cao AH (H thuộc BC)
Dựng trung tuyến AM, G là trọng tâm \(\Rightarrow\frac{MG}{AM}=\frac{1}{3}\)
\(S_{ABC}=\frac{BC.AH}{2}\) Ta có \(S_{ABC}\) không đổi, BC cố định không đổi => AH không đổi => A chạy trên đường thẳng d//BC
Từ G dựng GK//AH (K thuộc BC)
\(\Rightarrow\frac{MG}{AM}=\frac{KG}{AH}=\frac{1}{3}\) (Talet trong tam giác) \(\Rightarrow KG=\frac{AH}{3}\) không đổi
Mà GK//AH, AH vuông góc với BC => GK vuông góc với BC => G chạy trên đường thẳng //BC cách BC 1 khoảng không đổi\(=\frac{AH}{3}\)
Hình vẽ :
Em tham khảo nha.
Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)