giai phuong trinh
\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta thấy do ABCD là hình vuông nên \(\widehat{FCN}=\widehat{MAE}=45^o\)
Lại có \(\widehat{FCN}=\widehat{FBN}\) (Góc nội tiếp cùng chắn cung FN)
Vậy nên \(\widehat{MAE}=\widehat{MBE}\) hay tứ giác AMEB nội tiếp.
b. Do tứ giác AMEB nội tiếp nên \(\widehat{MEB}=180^o-\widehat{BAM}=90^o\)
Do P thuộc đường tròn (O) nên \(\widehat{MPB}=90^o\Rightarrow\)MPEB nội tiếp.
\(\Rightarrow\widehat{MBP}=\widehat{MEP}\)
Xét tam giác MBP có \(\widehat{MBP}+\widehat{BMP}=90^o\)
Xét tam giác FMN có \(\widehat{QNP}+\widehat{BMP}=90^o\)
Vậy \(\widehat{QNP}=\widehat{MBP}=\widehat{MEP}\)
Vậy tứ giác QPNE nội tiếp hay \(\widehat{QPN}=180^o-\widehat{QEN}=90^o\)
Góc \(\widehat{BPN}=90^o\Rightarrow\) B, Q, P thẳng hàng.
Vì \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{cases}}\)
\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)
\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Rightarrow VT\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)
Do \(a+b+c\ge2\Rightarrow a+b+c-1\ge1\Rightarrow VT\ge2\)
Đẳng thức xảy ra khi 1 trong 3 số a,b,c có 2 số bằng 1 và 1 số bằng 0
bạn thử giải hộ mình mấy bài này vs
https://diendantoanhoc.net/topic/173087-to%C3%A1n-%C3%B4n-thi-v%C3%A0o-l%E1%BB%9Bp-10/#entry681162
Gọi x (km/h) là vận tốc của xe thứ nhất. Điều kiện x > 0.
Khi đó vận tốc của xe lửa thứ hai là x + 5 (km/h).
Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: \(\frac{450}{x}\) (giờ)
Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: \(\frac{450}{x+5}\) (giờ)
Vì xe lửa thứ hai đi sau 1 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 1 giờ. Ta có phương trình:
\(\frac{450}{x}-\frac{450}{x+5}=1\)
\(\Leftrightarrow x^2+5x-2250=0\)
Giải phương trình ta được: x1 = 45 (nhận); x2 = -50 (loại)
Vậy: Vận tốc của xe lửa thứ nhất là 45km/h
Vận tốc của xe lửa thứ hai là 50km/h
Gọi x (km/h) là vận tốc của xe thứ nhất. Điều kiện x > 0.
Khi đó vận tốc của xe lửa thứ hai là x + 5 (km/h).
Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: 450/x (giờ)
Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: 450/x+5 (giờ)
Vì xe lửa thứ hai đi sau 1 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 1 giờ. Ta có phương trình:
450/x−450/x+5=1
⇔ \(x^2\) +5x−2250=0
Giải phương trình ta được: x1 = 45 (nhận); x2 = -50 (loại)
Vậy: Vận tốc của xe lửa thứ nhất là 45km/h
Vận tốc của xe lửa thứ hai là 50km/h
\(\left[x-1\right]^{2010}\ge0\)
\(\Rightarrow x^{2003}\ge1\)
\(\Rightarrow x^{2003}+\left[x-1\right]^{2010}\ge1\)
=> x2003 + [x-1]2010 = 1 khi x = 1
Nó có 2 nghiệm là \(\hept{\begin{cases}x=0\\x=1\end{cases}}\) lận đấy b Đào Trọng Luân - Trang của Đào Trọng Luân - Học toán với OnlineMath
Sửa đề: \(\hept{\begin{cases}x+y+z=15\\x^3+y^3+z^3=495\end{cases}}\)
Không mất tính tổng quát ta giả sử: \(x\ge y\ge z>0\)
\(\Rightarrow15=x+y+z\ge3z\)
\(\Leftrightarrow0< z\le5\)
Với \(z=1\) thì ta có
\(\hept{\begin{cases}x+y=14\\x^3+y^3=494\end{cases}}\) hệ này vô nghiệm
Tương tự cho các trường hợp còn lại ta sẽ tìm được nghiệm.
\(\hept{\begin{cases}\sqrt{2x^2-xy}=x-2y+1\left(1\right)\\x^2-3xy+2y^2=0\left(2\right)\end{cases}}\)
Điều kiện bạn tự làm nhé.
Xét PT (2) ta có
\(x^2-3xy+2y^2=0\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(-2xy+2y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\x=2y\end{cases}}\)
Thế x = y vào PT (1) ta được
\(\sqrt{2x^2-x^2}=x-2x+1\)
\(\Leftrightarrow\sqrt{x^2}=1-x\left(0\le x\le1\right)\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=y=\frac{1}{2}\)
Tương tự cho trường hợp còn lại. Nhớ đối chiếu điều kiện để chọn nghiệm.
\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)
Điều kiện: \(x\ge\frac{1}{3}\)
Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)
\(\Rightarrow x=a^2+\frac{1}{3}\)
Ta suy ra phương trình tương đương với
\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)
\(\Leftrightarrow54a^4+30a^2+27a-13=0\)
\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)
Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)
\(\Rightarrow3a-1=0\)
\(\Leftrightarrow a=\frac{1}{3}\)
\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)
\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{4}{9}\)