K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)

Điều kiện: \(x\ge\frac{1}{3}\)

Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)

\(\Rightarrow x=a^2+\frac{1}{3}\)

Ta suy ra phương trình tương đương với

\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)

\(\Leftrightarrow54a^4+30a^2+27a-13=0\)

\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)

Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)

\(\Rightarrow3a-1=0\)

\(\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)

\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)

\(\Leftrightarrow x=\frac{4}{9}\)

23 tháng 5 2017

Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Đường tròn c: Đường tròn qua N với tâm O Đoạn thẳng f: Đoạn thẳng [B, C] của Hình đa giác TenDaGiac1 Đoạn thẳng g: Đoạn thẳng [C, D] của Hình đa giác TenDaGiac1 Đoạn thẳng h: Đoạn thẳng [D, A] của Hình đa giác TenDaGiac1 Đoạn thẳng i: Đoạn thẳng [A, B] của Hình đa giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, N] Đoạn thẳng m: Đoạn thẳng [B, M] Đoạn thẳng n: Đoạn thẳng [M, E] Đoạn thẳng p: Đoạn thẳng [F, N] Đoạn thẳng q: Đoạn thẳng [M, N] Đoạn thẳng r: Đoạn thẳng [Q, P] Đoạn thẳng s: Đoạn thẳng [P, E] B = (-1.04, 1.22) B = (-1.04, 1.22) B = (-1.04, 1.22) C = (4.1, 1.2) C = (4.1, 1.2) C = (4.1, 1.2) Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm O: Trung điểm của k Điểm O: Trung điểm của k Điểm O: Trung điểm của k Điểm F: Giao điểm của c, j Điểm F: Giao điểm của c, j Điểm F: Giao điểm của c, j Điểm M: Giao điểm của l, h Điểm M: Giao điểm của l, h Điểm M: Giao điểm của l, h Điểm Q: Giao điểm của n, p Điểm Q: Giao điểm của n, p Điểm Q: Giao điểm của n, p Điểm P: Giao điểm của c, q Điểm P: Giao điểm của c, q Điểm P: Giao điểm của c, q

a. Ta thấy do ABCD là hình vuông nên \(\widehat{FCN}=\widehat{MAE}=45^o\)

Lại có \(\widehat{FCN}=\widehat{FBN}\) (Góc nội tiếp cùng chắn cung FN)

Vậy nên \(\widehat{MAE}=\widehat{MBE}\) hay tứ giác AMEB nội tiếp.

b. Do  tứ giác AMEB nội tiếp nên \(\widehat{MEB}=180^o-\widehat{BAM}=90^o\)

Do P thuộc đường tròn (O) nên \(\widehat{MPB}=90^o\Rightarrow\)MPEB nội tiếp.

\(\Rightarrow\widehat{MBP}=\widehat{MEP}\)

Xét tam giác MBP có \(\widehat{MBP}+\widehat{BMP}=90^o\)

Xét tam giác FMN có \(\widehat{QNP}+\widehat{BMP}=90^o\)

Vậy \(\widehat{QNP}=\widehat{MBP}=\widehat{MEP}\)

Vậy tứ giác QPNE nội tiếp hay \(\widehat{QPN}=180^o-\widehat{QEN}=90^o\)

Góc \(\widehat{BPN}=90^o\Rightarrow\) B, Q, P thẳng hàng.

23 tháng 5 2017

Woa vẽ được hình à. Chỉ cho em với chị HOÀNG THỊ THU HIỀN.

19 tháng 5 2017

Vì \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{cases}}\)

\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow VT\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)

Do \(a+b+c\ge2\Rightarrow a+b+c-1\ge1\Rightarrow VT\ge2\)

Đẳng thức xảy ra khi 1 trong 3 số a,b,c có 2 số bằng 1 và 1 số bằng 0

19 tháng 5 2017

bạn thử giải hộ mình mấy bài này vs

https://diendantoanhoc.net/topic/173087-to%C3%A1n-%C3%B4n-thi-v%C3%A0o-l%E1%BB%9Bp-10/#entry681162

17 tháng 5 2017

Gọi x (km/h) là vận tốc của xe thứ nhất. Điều kiện x > 0.

Khi đó vận tốc của xe lửa  thứ hai là x + 5 (km/h).

Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: \(\frac{450}{x}\) (giờ)

Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: \(\frac{450}{x+5}\) (giờ)

Vì xe lửa thứ hai đi sau 1 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 1 giờ. Ta có phương trình:

\(\frac{450}{x}-\frac{450}{x+5}=1\)

\(\Leftrightarrow x^2+5x-2250=0\)

Giải phương trình ta được: x1 = 45 (nhận); x2 = -50 (loại)

Vậy: Vận tốc của xe lửa thứ nhất là 45km/h

Vận tốc của xe lửa thứ hai là 50km/h

17 tháng 5 2017

Gọi x (km/h) là vận tốc của xe thứ nhất. Điều kiện x > 0.

Khi đó vận tốc của xe lửa thứ hai là x + 5 (km/h).

Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: 450/x (giờ)

Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: 450/x+5 (giờ)

Vì xe lửa thứ hai đi sau 1 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 1 giờ. Ta có phương trình:

450/x−450/x+5=1

\(x^2\) +5x−2250=0

Giải phương trình ta được: x1 = 45 (nhận); x2 = -50 (loại)

Vậy: Vận tốc của xe lửa thứ nhất là 45km/h

Vận tốc của xe lửa thứ hai là 50km/h

18 tháng 5 2017

\(\left[x-1\right]^{2010}\ge0\)

\(\Rightarrow x^{2003}\ge1\)

\(\Rightarrow x^{2003}+\left[x-1\right]^{2010}\ge1\)

=> x2003 + [x-1]2010 = 1 khi x = 1

18 tháng 5 2017

Nó có 2 nghiệm là \(\hept{\begin{cases}x=0\\x=1\end{cases}}\) lận đấy b Đào Trọng Luân - Trang của Đào Trọng Luân - Học toán với OnlineMath

18 tháng 5 2017

Sửa đề: \(\hept{\begin{cases}x+y+z=15\\x^3+y^3+z^3=495\end{cases}}\)

Không mất tính tổng quát ta giả sử: \(x\ge y\ge z>0\)

\(\Rightarrow15=x+y+z\ge3z\)

\(\Leftrightarrow0< z\le5\)

Với \(z=1\) thì ta có

\(\hept{\begin{cases}x+y=14\\x^3+y^3=494\end{cases}}\) hệ này vô nghiệm

Tương tự cho các trường hợp còn lại ta sẽ tìm được nghiệm.

23 tháng 5 2017

MA^2+MB^2=K^2

=(A^2+B^2)×M=k^2

17 tháng 5 2017

\(\hept{\begin{cases}\sqrt{2x^2-xy}=x-2y+1\left(1\right)\\x^2-3xy+2y^2=0\left(2\right)\end{cases}}\)

Điều kiện bạn tự làm nhé.

Xét PT (2) ta có

\(x^2-3xy+2y^2=0\)

\(\Leftrightarrow\left(x^2-xy\right)+\left(-2xy+2y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=y\\x=2y\end{cases}}\)

Thế x = y vào PT (1) ta được

\(\sqrt{2x^2-x^2}=x-2x+1\)

\(\Leftrightarrow\sqrt{x^2}=1-x\left(0\le x\le1\right)\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=y=\frac{1}{2}\)

Tương tự cho trường hợp còn lại. Nhớ đối chiếu điều kiện để chọn nghiệm.

17 tháng 5 2017

PT (2) thiếu \(x^2-3xy+2x^2=0\)