K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [A, A'] Đoạn thẳng l: Đoạn thẳng [B, B'] Đoạn thẳng m: Đoạn thẳng [A', B'] Đoạn thẳng n: Đoạn thẳng [M, B] Đoạn thẳng p: Đoạn thẳng [A, N] Đoạn thẳng s: Đoạn thẳng [A, K'] Đoạn thẳng t: Đoạn thẳng [B, K'] Đoạn thẳng a: Đoạn thẳng [O, J] Đoạn thẳng b: Đoạn thẳng [N, O] Đoạn thẳng d: Đoạn thẳng [M, O] Đoạn thẳng e: Đoạn thẳng [K', I] Đoạn thẳng g_1: Đoạn thẳng [H, I] O = (1.44, 3.08) O = (1.44, 3.08) O = (1.44, 3.08) B = (4.86, 3.08) B = (4.86, 3.08) B = (4.86, 3.08) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm N: Điểm trên c Điểm N: Điểm trên c Điểm N: Điểm trên c Điểm M: Điểm trên c Điểm M: Điểm trên c Điểm M: Điểm trên c Điểm A': Giao điểm đường của h, i Điểm A': Giao điểm đường của h, i Điểm A': Giao điểm đường của h, i Điểm B': Giao điểm đường của h, j Điểm B': Giao điểm đường của h, j Điểm B': Giao điểm đường của h, j Điểm I: Giao điểm đường của n, p Điểm I: Giao điểm đường của n, p Điểm I: Giao điểm đường của n, p Điểm J: Trung điểm của M, N Điểm J: Trung điểm của M, N Điểm J: Trung điểm của M, N Điểm K': Giao điểm đường của q, r Điểm K': Giao điểm đường của q, r Điểm K': Giao điểm đường của q, r Điểm H: Giao điểm đường của f_1, g Điểm H: Giao điểm đường của f_1, g Điểm H: Giao điểm đường của f_1, g

a) Gọi J là trung điểm A'B'. Ta thấy ngay OJ là đường trung bình hình thang AA'B'B.

Từ đó suy ra \(OJ=\frac{AA'+BB'}{2}=\frac{R\sqrt{3}}{2}\)

Lại do OJ // AA' // BB' nên \(OJ⊥A'B'\).

Xét tam giác vuông MOI, có \(MO=R;OJ=\frac{R\sqrt{3}}{2}\Rightarrow MJ=\sqrt{R^2-\frac{3R}{4}}=\frac{R}{2}\) (Định lý Pitago)

Tương tự \(JN=\frac{R}{2}\Rightarrow MN=R.\)

b) Dễ thấy \(\widehat{IMK}=\widehat{INK}=90^o\Rightarrow\) tứ giác MINK nội tiếp đường tròn đường kính IK.

Xét tam giác MON có MO = ON = MN = R nên tam giác đó đều, vậy \(\widehat{MON}=60^o\Rightarrow\widehat{MBN}=30^o\)

(Góc nội tiếp và góc ở tâm cùng chắn một cung)

Do MINK và AMNB nội tiếp nên \(\widehat{MKI}=\widehat{MNI}=\widehat{MBA}\)

Vậy \(\Delta MIK\sim\Delta MAB\left(g-g\right)\Rightarrow\frac{IK}{AB}=\frac{MK}{MB}=tan\widehat{MBK}=tan30^o=\frac{\sqrt{3}}{3}\)

Suy ra  \(IK=\frac{\sqrt{3}}{3}.2R=\frac{2R\sqrt{3}}{3}\)

Vậy thì bán kính đường tròn nội tiếp MINK là \(\frac{R\sqrt{3}}{3}.\)

c) Gọi H là chân đường vuông góc hạ từ K xuống AB. Ta thấy ngay KH là đường cao tam giác AKB.

Diện tích tam giác AKB lớn nhất khi KH lớn nhất hay IH lớn nhất.

IH lớn nhất khi tam giác KAB cân tại K. Lại có \(\widehat{AKB}=60^o\) nên KAB là tam giác đều. Khi đó MN là đường trung bình tam giác KAB nên có tính chất là song song và bằng một nửa AB.

\(S_{KAB}=\frac{1}{2}.AB.OK=\frac{1}{2}.2R.R\sqrt{3}=\sqrt{3}R^2\)

25 tháng 7 2017

neu mnik bang mn thi chung ta se phai lay aq1p +aqwp roi nhan ra lay ket qua chia cho S tim dc la ok

25 tháng 7 2017

Ta có

\(\hept{\begin{cases}\sqrt{2008}+\sqrt{2005}< \sqrt{2015}+\sqrt{2009}\left(1\right)\\\sqrt{2010}+\sqrt{2007}< \sqrt{2015}+\sqrt{2009}\left(2\right)\end{cases}}\)

\(\Rightarrow\frac{1}{\sqrt{2008}+\sqrt{2005}}+\frac{1}{\sqrt{2010}+\sqrt{2007}}>\frac{2}{\sqrt{2015}+\sqrt{2009}}\)

\(\Leftrightarrow\frac{\sqrt{2008}-\sqrt{2005}}{3}+\frac{\sqrt{2010}-\sqrt{2007}}{3}>\frac{\sqrt{2015}-\sqrt{2009}}{3}\)

\(\Leftrightarrow\sqrt{2008}+\sqrt{2009}+\sqrt{2010}>\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)

25 tháng 7 2017

A=√2008+√2009+√2010A=2008+2009+2010 và B=√2005+√2007+√2015

k và kb với mình nha !!!

25 tháng 7 2017

\(\left(xy+1\right)\left(2y-x\right)=2x^3y^2\Leftrightarrow2xy^2+2y-x^2y-x=2x^3y^2\)

\(\Leftrightarrow2xy^2+2y-x^2y+x=2x\left(x^2y^2+1\right)=2y^2.2x=4xy^2\)

\(\Leftrightarrow2y-x^2y+x-2xy^2=0\Leftrightarrow\left(2y+x\right)\left(1-xy\right)=0\Rightarrow\orbr{\begin{cases}x=-2y\\xy=1\end{cases}.}\)

Đến đây thì dễ rồi

24 tháng 7 2017

Có 1 ý tưởng nhưng mà khùng v ler ấy :))

Từ \(x^2y^2+1=2y^2\Rightarrow x^2y^2-2y^2=-1\)

\(\Rightarrow y^2\left(x^2-2\right)=-1\Rightarrow y^2=\frac{1}{2-x^2}\Rightarrow y=\frac{1}{\sqrt{2-x^2}}\)

\(pt\left(1\right)\Rightarrow\left(x\sqrt{\frac{1}{\: 2-x^2}}+1\right)\left(2\sqrt{\frac{1}{\: 2-x^2}}-x\right)=2x^3\left(\sqrt{\frac{1}{\: 2-x^2}}\right)^2\)

\(\Leftrightarrow\frac{x^2\sqrt{2-x^2}}{x^2-2}-\frac{2\sqrt{2-x^2}}{x^2-2}-\frac{x^3}{x^2-2}=\frac{2x^3}{2-x^2}\)

\(\Leftrightarrow\frac{x^2\sqrt{2-x^2}}{x^2-2}-\frac{2\sqrt{2-x^2}}{x^2-2}+\frac{x^3}{x^2-2}=0\)

\(\Leftrightarrow\frac{x^2\sqrt{2-x^2}}{x^2-2}+1-\frac{2\sqrt{2-x^2}}{x^2-2}-2+\frac{x^3}{x^2-2}+1=0\)

\(\Leftrightarrow\frac{x^2\sqrt{2-x^2}+x^2-2}{x^2-2}-\frac{2\sqrt{2-x^2}-\left(2x^2-4\right)}{x^2-2}+\frac{x^3+x^2-2}{x^2-2}=0\)

\(\Leftrightarrow\frac{\frac{x^4\left(2-x^2\right)-\left(x^2-2\right)^2}{x^2\sqrt{2-x^2}-x^2+2}}{x^2-2}-\frac{\frac{4\left(2-x^2\right)-\left(2x^2-4\right)^2}{2\sqrt{2-x^2}+\left(2x^2-4\right)}}{x^2-2}+\frac{\left(x-1\right)\left(x^2+2x+2\right)}{x^2-2}=0\)

\(\Leftrightarrow\frac{\frac{-\left(x-1\right)\left(x+1\right)\left(x^2-2\right)\left(x^2+2\right)}{x^2\sqrt{2-x^2}-x^2+2}}{x^2-2}-\frac{\frac{-4\left(x-1\right)\left(x+1\right)\left(x^2-2\right)}{2\sqrt{2-x^2}+\left(2x^2-4\right)}}{x^2-2}+\frac{\left(x-1\right)\left(x^2+2x+2\right)}{x^2-2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{\frac{-\left(x+1\right)\left(x^2-2\right)\left(x^2+2\right)}{x^2\sqrt{2-x^2}-x^2+2}}{x^2-2}-\frac{\frac{-4\left(x+1\right)\left(x^2-2\right)}{2\sqrt{2-x^2}+\left(2x^2-4\right)}}{x^2-2}+\frac{x^2+2x+2}{x^2-2}\right)=0\)

\(\Rightarrow x=1\Rightarrow y=\frac{1}{\sqrt{2-x^2}}=1\)

Ôi chúa :)) nhầm dấu thảo nào ngồi từ chiều tới giờ ko ra :))

25 tháng 7 2017

Ta có:

\(3^{4n+1}=3.81^n\text{≡}3\left(mod10\right)\)

\(\Rightarrow3^{4n+1}=10k+3\)

\(\Rightarrow2^{3^{4n+1}}=2^{10k+3}=8.1024^k\text{≡}8\left(mod11\right)\left(1\right)\)

Ta lại có:

\(2^{4n+1}=2.16^n\text{≡}2\left(mod5\right)\)

\(\Rightarrow2^{4n+1}=5a+2\)

\(\Rightarrow3^{2^{4n+1}}=3^{5a+2}=9.243^a\text{≡}9\left(mod11\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow3^{2^{4n+1}}+2^{3^{4n+1}}+5\text{≡}9+8+5\text{≡}22\text{≡}0\left(mod11\right)\)

25 tháng 7 2017

thiếu đk của n 

27 tháng 7 2017

an=a2 

ho 

a1=a2=1;an=a2n1+2an2 

C/m annguyên với mọi n

(Lúc trc mik ghi sai đề thông cảm nha các bạn h mik ghi đúng rồi các bạn giúp mình với)

Được cập nhật 25/07 lúc 08:54

Câu hỏi tương tự Đọc thêm Báo cáoToán lớp 9 Gửi câu trả lời của bạn

Chưa có ai trả lời c n1+2an2 

3 tháng 8 2017

Cho dãy số a1;a2;...;an và số nguyên dương kn

Chứng minh rằng tồn tại tổng 

nha bạnCậu Nhok Lạnh Lùng

(ai+ai+1+...+aj)k (i<jn)

17 tháng 9 2017

đề đúng rồi ko làm đcthì thôi

16 tháng 7 2017

Sửa đề

\(\frac{sin^2x-c\text{os}^2x+c\text{os}^4x}{c\text{os}^2x-sin^2x+sin^4x}=\frac{sin^2x-c\text{os}^2x+\left(1-sin^2x\right)^2}{c\text{os}^2x-sin^2x+\left(1-c\text{os}^2x\right)^2}\)

\(=\frac{-sin^2x-c\text{os}^2x+sin^4x+1}{-c\text{os}^2x-sin^2x+c\text{os}^4x+1}\)

\(=\frac{-1+sin^4x+1}{-1+c\text{os}^4x+1}=\frac{sin^4x}{c\text{os}^4x}=tan^4x\)

16 tháng 7 2017

Ta dễ dàng thấy được \(2^y\ge2\Rightarrow y\ge1\)

Xét \(y=1\Rightarrow x=0\)

Xét \(y>1\Rightarrow2^y⋮4\)

Ta chia 2 trường hợp

TH 1: \(x=2k+1\)

\(\Rightarrow5^{2k+1}+1=2.3.\left(5^{2k}-5^{2k-1}+...\right)\)

Nhận xét VT có ít nhất trong tích 1 số lẻ (3) còn vế phải là luỹ thừa của 2 nên không tồn tại giá trị thoả mãn bài toán.

TH 2: \(x=2k\left(k\ne0\right)\)

\(\Rightarrow5^{2k}+1=25^k+1\equiv2\left(mod4\right)\)

Ta có VT không chia hết cho 4 còn VP chia hết cho 4 nên loại trường hợp này.

Vậy PT có nhiệm là: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)

16 tháng 7 2017

Câu hỏi của Phan Minh Trung - Toán lớp 7 - Học toán với OnlineMath

Câu hỏi của Trần Đức Mạnh - Toán lớp 7 | Học trực tuyến

16 tháng 7 2017

Bác phải đọc cái đề nữa chứ. Đâu phải thấy giông giống là giải y chan đâu. Có thể cái đề của bác lúc trước là x,y,z không âm nên mới giải vậy. Còn nếu x,y,z dương thì phải giải khác.

16 tháng 7 2017

Ta có:

\(a+a^3+b+b^3+c+c^3\ge2\left(a^2+b^2+c^2\right)\)

Dấu = xảy ra khi \(a=b=c=1\)

Vậy nên không tồn tại giá trị a,b,c thỏa mãn bài toán.

16 tháng 7 2017

Sửa đề \(\hept{\begin{cases}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{cases}}\)

Ta có; \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=1\)

\(\Leftrightarrow xy+yz+zx=0\)

Ta lại có:

\(x^3+y^3+z^3-3xyz+3xyz=1\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz=1\)

\(\Leftrightarrow3xyz=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)

Với \(x=0\)

\(\Rightarrow\hept{\begin{cases}y=0\\z=1\end{cases}}\)hoặc \(\hept{\begin{cases}y=1\\z=0\end{cases}}\)

\(\Rightarrow x+y^2+z^3=1\)

Tương tự cho các trường hợp còn lại.

16 tháng 7 2017

sao đề sao tính?