CMR:với mọi m,n Tự nhiên thì :x3m+1+x3n+2+1 chia hết cho x2+x+1
Giúp tui đi mà Đừng vô tâm vậy chứ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình khẳng định điều ngược lại:
"Không thể biểu diễn lập phương 1 số nguyên dưới dạng hiệu lập phương 2 số nguyên"
Tức là không tồn tại nghiệm nguyên a;b;c của :
a3 = c3 - b3 hay cũng tương đương a3 + b3 = c3
Lời giải ở đây.
math.stanford.edu/~lekheng/flt/wiles.pdf
Giả sử \(n+1=a^2\) ; \(2n+1=b^2\) \(\left(a,b\in N^{\text{*}}\right)\)
Ta có b là số lẻ \(\Leftrightarrow b=2m+1\Rightarrow b^2=4m\left(m+1\right)+1\Rightarrow n=2m\left(m+1\right)\)
=> n chẵn => n + 1 lẻ => a lẻ => a = 2k+1 => \(n+1=\left(2k+1\right)^2=4k\left(k+1\right)+1\Rightarrow n=4k\left(k+1\right)⋮8\)
Vậy n chia hết cho 8
Ta có : \(a^2+b^2=3n+2\equiv2\)(mod 3)
Mặt khác : \(b^2\)chia 3 dư 0 hoặc 1 , \(a^2\)chia 3 dư 0 hoặc 1
=> Để \(a^2+b^2\equiv2\)(mod 3) thì \(a^2\equiv1\)(mod 3) và \(b^2\equiv1\)(mod 3)
\(\Rightarrow b^2-a^2\)chia hết cho 3
Ta có : n = (2n + 1) - (n + 1) = \(b^2-a^2\)chia hết cho 3
Như vậy \(n⋮3,n⋮8\) mà (3,8) = 1
=> \(n⋮24\)
Dễ mà bạn
A=444...4888...89 (với n chữ số 4, n-1 chữ số 8)
=4*(111...1222...2)+1(n chữ số 1, n chữ số 2)
=4*(111...1+111...1)+1( cái 111...1 đầu tiên là 2n chữ số 1, cái 111...1 đằng sau là n chữ số 1)
\(=4\cdot\left(\frac{10^{2n}-1}{9}+\frac{10^n-1}{9}\right)+1\)
=\(\frac{4\cdot10^{2n}-4+4\cdot10^n-4+9}{9}\)
=\(\frac{4\cdot10^{2n}+4\cdot10^n+1}{9}\)
=\(\left(\frac{2\cdot10^n+1}{3}\right)^2\)
=\(\left(\frac{200...01}{3}\right)^2\)(với n-1 chữ số 0)
a = 44...4488..889(n chữ số 4 ; n - 1 chữ số 8)
= 44...4488..88 + 1(n chữ số 4 ; n chữ số 8)
= 44..44 + 44...44 + 1(2n chữ số 4 ; n chữ số 4)
= \(4.\frac{10^{2n}-1}{9}+4.\frac{10^n-1}{9}+1=\frac{4.10^{2n}-4+4.10^n-4+9}{9}=\frac{\left(2.10^n\right)^2+2.\left(2.10^n\right).1+1^2}{3^2}\)
=\(\left(\frac{2.10^n+1}{3}\right)^2=\left(\frac{200..01}{3}\right)^2=\left(66..667\right)^2\)(n - 1 chữ số 0 ; n - 1 chữ số 6)
Vậy a là số chính phương (đpcm).
Sửa đề thành vầy mới làm dc bạn\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2axcz=0\)
\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz+c^2y^2=0\)
\(\Rightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
\(\Rightarrow ay-bx=0,az-cx=0,bz-cy=0\)
\(\Rightarrow ay=bx,az=cx,bz=cy\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y},\frac{a}{x}=\frac{c}{z},\frac{b}{y}=\frac{c}{z}\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(dpcm\right)\)
Chúc bạn học tốt . Chọn cho mình nha cảm ơn
Ta có: \(\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a=>\left(\frac{x^4-1}{x^2}\right):\left(\frac{x^4+1}{x^2}\right)=a\)
\(=>\frac{x^4-1}{x^2}.\frac{x^2}{x^4+1}=a=>\frac{x^4-1}{x^4+1}=a=>x^4-1=a\left(x^4+1\right)=ax^4+a\)
\(=>x^4-ax^4=a+1=>x^4=\frac{a+1}{1-a}\)
Thay vào M,ta có:
\(M=\left(x^4-\frac{1}{x^4}\right):\left(x^4+\frac{1}{x^4}\right)=\left(\frac{a+1}{1-a}-\frac{1}{\frac{a+1}{1-a}}\right):\left(\frac{a+1}{1-a}+\frac{1}{\frac{a+1}{1-a}}\right)\)
\(=\left(\frac{a+1}{1-a}-\frac{1-a}{a+1}\right):\left(\frac{a+1}{1-a}+\frac{1-a}{a+1}\right)=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}:\frac{\left(a+1\right)^2+\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}\)
\(=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}.\frac{\left(1-a\right)\left(a+1\right)}{\left(a+1\right)^2+\left(1-a\right)^2}=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(a+1\right)^2+\left(1-a\right)^2}\)
\(=\frac{a^2+2a+1-\left(1-2a+a^2\right)}{a^2+2a+1+1-2a+a^2}=\frac{a^2+2a+1-1+2a-a^2}{a^2+2a+1+1-2a+a^2}=\frac{4a}{2a^2+2}=\frac{2.2a}{2.\left(a^2+1\right)}=\frac{2a}{a^2+1}\)
Vậy \(M=\frac{2a}{a^2+1}\)
Làm hộ mk, phân tích đa thức thành nhân tử
a^4 b^4 c^4 - 2*a^2*b^2 - 2*b^2*c^2 - 2*c^2*a^2
Đúng rồi đó, vừa nãy cô quên không kiểm tra điều kiện, cô chữa lại nhé :)
Ta phân tích A thành nhân tử \(A=\left(2n^2+2n+1\right)\left(n^2+2n+2\right)\)
Để A là số nguyên tố thì ta có \(\hept{\begin{cases}2n^2+2n+1=1\\n^2+2n+2>1\end{cases}}\) hoặc \(\hept{\begin{cases}n^2+2n+2=1\\2n^2+2n+1>1\end{cases}}\)
Từ đó suy ra n = 0. Khi đó A = 2.
\(x^2+\left(\frac{x-1}{x}\right)^2=8\)
\(\Rightarrow x^2-\frac{2}{x}+\frac{1}{x^2}+1=8\)
\(\Rightarrow x^2-\frac{2}{x}+\frac{1}{x^2}-7=0\)
\(\Rightarrow\frac{x^4}{x^2}-\frac{2x}{x^2}+\frac{1}{x^2}-\frac{7x^2}{x^2}=0\)
\(\Rightarrow\frac{x^4-7x^2-2x+1}{x^2}=0\)
\(\Rightarrow x^4-7x^2-2x+1=0\)
Tới đây bạn tự làm nhé =.="
x=+-\(\sqrt{\sqrt{23}}+5\) phần căn 2
x=-\(\sqrt{5-\sqrt{23}}\)phần căn 2
x=\(\sqrt{5-\sqrt{ }23}\)phần 2
1./ Khẳng định 1: Với mọi p tự nhiên > 0, ta đều có: yp - 1 = (y - 1)*(yp-1 + yp-2 + yp-3 +... + y + 1)
Hay yp - 1 chia hết cho y - 1 với mọi y nguyên > 1.
2./ Nếu m = n = 0 thì hiển nhiên x3*0+1 + x3*0+2 + 1 = x2 + x + 1 chia hết cho: x2 + x + 1
3./ Nếu m; n không đồng thời bằng 0 thì:
Viết \(A=x^{3m+1}+x^{3n+2}+1=x\cdot x^{3m}-x+x^2\cdot x^{3n}-x^2+x^2+x+1.\)
\(A=x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+x^2+x+1\)
\(A=x\left(\left(x^3\right)^m-1\right)+x^2\left(\left(x^3\right)^n-1\right)+x^2+x+1\)
Áp dụng khẳng định 1 cho m, n tự nhiên > 0 ta có:
\(\left(x^3\right)^m-1\)và \(\left(x^3\right)^m-1\)chia hết cho x3 - 1. Mà x3 - 1 = (x - 1)(x2 + x + 1)
=> \(\left(x^3\right)^m-1\)và \(\left(x^3\right)^m-1\)chia hết cho x2 + x + 1
=> A chia hết cho x2 + x + 1 với mọi m,n là số tự nhiên. đpcm
Với m,n là các số tự nhiên ta có \(x^{3m+1}+x^{3n+1}+1=\left(x^{3m+1}-x\right)+\left(x^{3n+2}-x\right)+x^2+x+1\)
Ta thấy:
ii/ x^(3n + 2) - x^2 = x^2[(x^3)^n - 1] chia hết cho x^3 - 1, và vì x^3 - 1 chia hết cho x^2 + x + 1 nên x^(3n + 2) - x^2 chia hết cho x^2 + x + 1.
Từ đó suy ra [x^(3m + 1) - x] + [x^(3n + 2) - x^2] + (x^2 + x + 1) chia hết cho x^2 + x + 1, hay x^(3m + 1) + x^(3n + 2) + 1 chia hết cho x^2 + x + 1. Đây là điều phải chứng minh.