cho x+y+z=1; x2+y2+z2=1; x3+y3+z3=1
CMR: x+y2+z3=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân số chỉ số học sinh trung bình và yếu là:
1 - 7/12 = 5/12 (số học sinh cả lớp)
Phân số chỉ số hs giỏi và trung bình bằng 5/8 số hs cả lớp nên
Số hs giỏi hơn số học sinh yếu là:
5/8 - 5/12 = 5/24 (số hócinh cả lớp)
Số hs cả lớp là:
10 : 5/24 = 48 hs
Tổng số hs giỏi và khá là: 48 x 7/12 = 28 hs
Tổng số hs giỏi và tb là; 48 x 5/8 = 30 hs
Số hs giỏi là: (28 + 30 - 34) : 2 = 12 hs
Số hs khá là: 28 - 12 = 16 hs
số hs trung bình là: 30 - 12 = 18 hs
Số hs yếu là: 12 - 10 = 2hs
ĐS:....
Phân số chỉ số học sinh trung bình và yếu là:
1 - 7/12 = 5/12 (số học sinh cả lớp)
Phân số chỉ số hs giỏi và trung bình bằng 5/8 số hs cả lớp nên
Số hs giỏi hơn số học sinh yếu là:
5/8 - 5/12 = 5/24 (số hócinh cả lớp)
Số hs cả lớp là:
10 : 5/24 = 48 hs
Tổng số hs giỏi và khá là: 48 x 7/12 = 28 hs
Tổng số hs giỏi và tb là; 48 x 5/8 = 30 hs
Số hs giỏi là: (28 + 30 - 34) : 2 = 12 hs
Số hs khá là: 28 - 12 = 16 hs
số hs trung bình là: 30 - 12 = 18 hs
Số hs yếu là: 12 - 10 = 2hs
ĐS:....
A = 111....111 - 777....7
2x cs 1 x cs 7
+) Nếu x = 1 thì 11 - 7 = 4 = 22 là số chính phương
+) Nếu x > 1
=> A = 111.....111 - 777....77 = ......34 chia hết cho 2 nhưng không chia hết cho 4 nên không là
2x cs 1 x cs 7
số chính phương.
Vậy x = 1
Dễ mà, bài này trên lớp cậu đã hỏi mình đâu ?
Giải
A = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^n}\) ; B = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^m}\)
Muốn so sánh A với B chỉ cần so sánh \(\frac{1}{a^m}\) và \(\frac{1}{a^n}\)
Xét các trường hợp:
TH1: a = 1 thì am=an do đó A=B
TH2: a \(\ne\) 1 thì xét m và n
- Nếu m = n thì am = an do đó A=B
- Nếu m < n thì am < an do đó \(\frac{1}{a^m}\) > \(\frac{1}{a^n}\) ; vậy A<B
- Nếu m > n thì am > an do đó \(\frac{1}{a^m}\) < \(\frac{1}{a^n}\) ; vậy A>B
\(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}
A = 1/2² + 1/3² + 1/4² + 1/5² + ... + 1/100²
=> A < 1/2.3 + 1/3.4+ 1/4.5 + 1/5.6 + ... + 1/100.101
<=> A < 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/100 - 1/101
<=> A < 1/2 - 1/101
<=> A < 99/202 < 150/202 < 151,5/202
<=> A < 3/4 (đpcm)
a;b;c là số nguyên dương =>3abc>0
=>a^3>b^3=> a>b
và a^3>c^3=>a>c
=>2a>b+c
=>4a>2.(b+c)=a^2
=>4>a
2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2
vì b;c<2=a và b;c là các số nguyên dương =>b=c=1
vậy a=2;b=1;c=1
a;b;c là số nguyên dương =>3abc>0
=>a^3>b^3=> a>b
và a^3>c^3=>a>c
=>2a>b+c
=>4a>2.(b+c)=a^2
=>4>a
2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2
vì b;c<2=a và b;c là các số nguyên dương =>b=c=1
vậy a=2;b=1;c=1
là con gái hay con trai vậy ? nhìn cái tên thì chẳng ai phân biệt được trai hay gái đâu.
ta có : x^2+y^2+z^2 = 1 <=> (x+y+z)^2 = 1+2(xy+yz+xz) <=> 1 = 1 +2(xy+yz+xz)
<=> xy+yz+xz = 0 (*)
****) ÁP DỤNG KẾT QUẢ SAU :
ta có : a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)
thật vậy : (a+b+c)^3 = a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)-3abc
<=> a^3+b^3+c^3-3abc = (a+b+c)^3-3(a+b+c)(ab+bc+ac) = (a+b+c)((a+b+c)^2-3(ab+bc+ac))
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)
****) DO ĐÓ ÁP DỤNG VÀO BÀI TA ĐƯỢC :
x^3+y^3+z^3-3xyz = (1/2)(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2)
= (1/2)(x+y+z)(2(x^2+y^2+z^2)-2(xy+yz+xz))
<=> 1-3xyz = (1/2).1.2 = 1 <=> xyz = 0 (**)
+/ mà : x+y+z = 1 (***)
****) TỪ (*)(**)(***) TA SUY RA : x,y,z là 3 nghiệm của pt bậc 3 sau : U^3-U^2 = 0
<=> U = 0 HOẶC U = 1
+/ suy ra : 1 trong 3 phần tử x,y,z bằng 1, 2 phần tử còn lại sẽ là bằng 0
+/ DO ĐÓ : x+y^2+z^3 = 1
+/ SUY RA : điều phải chứng minh !
ta có : x^2+y^2+z^2 = 1 <=> (x+y+z)^2 = 1+2(xy+yz+xz) <=> 1 = 1 +2(xy+yz+xz)
<=> xy+yz+xz = 0 (*)
****) ÁP DỤNG KẾT QUẢ SAU :
ta có : a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)
thật vậy : (a+b+c)^3 = a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)-3abc
<=> a^3+b^3+c^3-3abc = (a+b+c)^3-3(a+b+c)(ab+bc+ac) = (a+b+c)((a+b+c)^2-3(ab+bc+ac))
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)
****) DO ĐÓ ÁP DỤNG VÀO BÀI TA ĐƯỢC :
x^3+y^3+z^3-3xyz = (1/2)(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2)
= (1/2)(x+y+z)(2(x^2+y^2+z^2)-2(xy+yz+xz))
<=> 1-3xyz = (1/2).1.2 = 1 <=> xyz = 0 (**)
+/ mà : x+y+z = 1 (***)
****) TỪ (*)(**)(***) TA SUY RA : x,y,z là 3 nghiệm của pt bậc 3 sau : U^3-U^2 = 0
<=> U = 0 HOẶC U = 1
+/ => : 1 trong 3 phần tử x,y,z bằng 1, 2 phần tử còn lại sẽ là bằng 0
+/ do đó : x+y^2+z^3 = 1
+/ =>: điều phải chứng minh !