cho tam giác ABC cân tại A.trên tia đối của tia BC lấy điểm D.trên tia đối của tia CB,lấy điểm E SAO CHO BD=CE.A)CM tam giác ABD=ACE .B)CM tam giác ADE cân tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào em, em tham khảo nhé!
1. A. control /ə/ B. enroll /ə/ C. solve /ɒ/ D. petrol /ə/
2. A. heritage /ɪdʒ/ B. cage /ɪdʒ/ C. cottage /ɪdʒ/ D. luggage /ɪdʒ/
=> Câu này không có đáp án đúng
3. A. useful /s/ B. promise /s/ C. advise /z/ D. increase /s/
4. A. sunbathing /ð/ B. southern /ð/ C. breathe /ð/ D. thunder /θ/
5. A. guitar /ɪ/ B. building /ɪ/ C. suitable /uː/ D. biscuit /ɪ/
Chúc em học tốt và có những trải nghiệm tuyệt vời tại olm.vn!
diện tích của hình thang là
\(12\times16=192\left(m^2\right)\)
diện tích hình tròn là
\(3,5^2.\pi\simeq38.5\left(m^2\right)\)
diện tích phần còn lại là
\(192-38.5=153.5\left(m^2\right)\)
bài 1 gọi x,y,z lần lượt là số lượng các gói 5 lạng,3 lạng và 2 lạng
ta có \(\hept{\begin{cases}5x+2y+z=56\\x+y+z=25\\z=2x\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=7\\z=12\end{cases}}}\)
bài 2.gọi x,y lần lượt là số lượng các trận thắng và hòa của đội
ta có
\(\hept{\begin{cases}x+y=25\\3x+y=59\end{cases}\Rightarrow\hept{\begin{cases}x=17\\y=8\end{cases}}}\)
ta có
\(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}\Rightarrow7x=2\left(2m-1\right)+3m+2=7m\Rightarrow x=m\Rightarrow y=m+1}\)
a. khi m=1 ta có hệ nghiệm là \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
b. để \(x^2+y^2=5\Leftrightarrow m^2+\left(m+1\right)^2=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)
c.\(x-3y>0\Leftrightarrow m-3\left(m+1\right)>0\Leftrightarrow-2m-3>0\Leftrightarrow m< -\frac{3}{2}\)
P/s: Hình vẽ chỉ mang tính chất minh họa
Từ D kẻ các đường song song với AC,AB cắt AB,AC lần lượt tại E,F
=> Tứ giác AEDF là hình bình hành
Lại có AD là phân giác góc EAF => Tứ giác AEDF là hình thoi
=> AE = ED = DF = FA
Xét trong tam giác AED cân tại E có góc EAD = 60 độ
=> Tam giác AED đều => AD = DE = DF
Áp dụng định lý Thales ta có:
DE // AC => \(\frac{DE}{AC}=\frac{BD}{BC}\) ; DF // AB => \(\frac{DF}{AB}=\frac{DC}{BC}\)
Cộng vế với vế 2 đẳng trên ta được: \(\frac{DE}{AC}+\frac{DF}{AB}=\frac{BD}{BC}+\frac{DC}{BC}\)
\(\Leftrightarrow\frac{AD}{AC}+\frac{AD}{AB}=1\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)
=> đpcm
Trình tự dựng gồm 3 bước:
- Dựng đoạn thẳng BC = 6cm
- Dựng cung chứa góc 40o trên đoạn thẳng BC.
- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:
Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H
Gọi giao điểm xy và cung chứa góc là , . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán
Cách dựng:
+ Dựng đoạn thẳng BC = 6cm.
+ Dựng cung chứa góc 40º trên đoạn thẳng BC (tương tự bài 46) :
Dựng tia Bx sao cho
Dựng tia By ⊥ Bx.
Dựng đường trung trực của BC cắt By tại O.
Dựng đường tròn (O; OB).
Cung lớn BC chính là cung chứa góc 40º dựng trên đoạn BC.
+ Dựng đường thẳng d song song với BC và cách BC một đoạn 4cm:
Lấy D là trung điểm BC.
Trên đường trung trực của BC lấy D’ sao cho DD’ = 4cm.
Dựng đường thẳng d đi qua D’ và vuông góc với DD’.
+ Đường thẳng d cắt cung lớn BC tại A.
Ta được ΔABC cần dựng.
Chứng minh:
+ Theo cách dựng có BC = 6cm.
+ A ∈ cung chứa góc 40º dựng trên đoạn BC
+ A ∈ d song song với BC và cách BC 4cm
⇒ AH = DD’ = 4cm.
Vậy ΔABC thỏa mãn yêu cầu đề bài.
Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.
a) Chứng minh =
Vì B’C’ // với BC => = (1)
Trong ∆ABH có BH’ // BH => = (2)
Từ 1 và 2 => =
b) B’C’ // BC mà AH ⊥ BC nên AH’ ⊥ B’C’ hay AH’ là đường cao của tam giác AB’C’.
Áp dụng kết quả câu a) ta có: AH’ = AH
= = => B’C’ = BC
=> SAB’C’= AH’.B’C’ = .AH.BC
=>SAB’C’= (AH.BC)
mà SABC= AH.BC = 67,5 cm2
Vậy SAB’C’= .67,5= 7,5 cm2
Tam giác \(ABO\)vuông tại \(O\). Do đó điểm \(O\)luôn thuộc đường tròn đường kính \(AB\)(trừ 2 điểm \(A\)và \(B\)).
Ta đã biết rằng hai đường chéo hình thoi vuông góc với nhau, vậy điểm O nhìn AB cố định dưới góc 90o.
Quỹ tích điểm O là nửa đường tròn đường kính AB
do tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\) mà AB=AC và BD =CE
nên tam giác ABD =ACE theo th c.g.c
b. từ câu a ta có AD=AE nên tam giác ADE cân tại A