- cho \(\Delta abc\). trên tia ba lấy điểm D sao cho A là trung điểm của BD. Trên tia CB lấy điểm E sao cho B là trung điểm của CE. Hai đường thẳng AC và DE cắt nhau tại I. Chứng minh Rằng DI=\(\frac{DE}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề đúng : Chứng minh : \(\frac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}=\frac{x^2+2x+2}{x-1}\)
Điều kiện : \(x\ne1\)
Phân tích : \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
\(x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1=x^3+2x-2x^2-\left(x^2-2x+1\right)-1\)
\(=x^3-3x^2+4x-2=\left(x^3-3x^2+3x-1\right)+\left(x-1\right)=\left(x-1\right)^3+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+2\right)\)
Suy ra : \(\frac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}=\frac{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}{\left(x-1\right)\left(x^2-2x+2\right)}=\frac{x^2+2x+2}{x-1}\)
Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)
\(\Leftrightarrow\)\(a^2+b^2+1-2ab-2a-2b=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)-2a+2b+1-4b=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2-2\left(a-b\right)+1=4b\)
\(\Leftrightarrow\)\(\left(a-b-1\right)^2=4b\) \(\left(1\right)\)
Do đó \(4b\)là một số chính phương, mà 4 là số chính phương suy ra b là số chính phương.
Đặt \(b=x^2,\)thay vào \(\left(1\right)\): \(\left(a-x^2-1\right)^2=4x^2\)
\(\Leftrightarrow\)\(\left(a-x^2-1\right)^2=\left(2x\right)^2\)
* Xét 2 trường hợp:
- Trường hợp 1: \(a-x^2-1=2x\)\(\Leftrightarrow\)\(a=x^2+2x+1=\left(x+1\right)^2\)
Ta có \(b=x^2\)và \(a=\left(x+1\right)^2\)\(\Rightarrow\)\(a\)và \(b\)là 2 số chính phương liên tiếp.
- Trường hợp 2: \(a-x^2-1=-2x\)\(\Leftrightarrow\)\(a=x^2-2x+1=\left(x-1\right)^2\)
Ta có \(b=x^2\)và \(a=\left(x-1\right)^2\)\(\Rightarrow\)\(a\)và \(b\)là 2 số chính phương liên tiếp.
Vậy \(a\)và \(b\)là 2 số chính phương liên tiếp.
1) Từ \(x+y+z=6\) và \(x^2+y^2+z^2=12\)ta dễ dàng suy ra \(xy+yz+zx=12\)
Như vậy \(x^2+y^2+z^2=xy+yz+zx\) \(\Leftrightarrow x=y=z\)
Mà \(x+y+z=6\)nên \(x=y=z=2\)thay vào Q ta tính được Q = 3.
Bài dưới mình có làm ra được 2 cách, bạn hiểu cách nào thì làm
Cách 1: Dùng phương pháp quy nạp (cách này mình cũng không biết được sử dụng trong trg hợp này ko)
-Với n=1 thì \(2^{2n}\left(2^{2n+1}-1\right)-1=2^2\left(2^3-1\right)-1=4.8-1=27\)chia hết cho 9
Vậy mệnh đề đúng với n=1
-Giả sử tồn tại số k sao cho \(2^{2k}\left(2^{2k+1}-1\right)-1\) chia hết cho 9 (giả thiết quy nạp). Do đó, \(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1
Ta phải cm mệnh đề cũng đúng với k+1:
Thật vậy, \(2^{2\left(k+1\right)}\left(2^{2\left(k+1\right)+1}-1\right)-1=2^{2k+2}\left(2^{2k+3}-1\right)-1=2^{2k+4}\left(2^{2k+1}-\frac{1}{4}\right)-1\)
<=> \(2^{2k+4}\left(2^{2k+1}-1\right)+\frac{3}{4}\left(2^{2k+4}\right)-1=2^{2k}.16.\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)
Ta thấy:
\(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1. Do đó, \(2^{2k}.16.\left(2^{2k+1}-1\right)\)chia 9 dư 7.
Các số có cơ số =2, số mũ lẻ thì tích của số đó với 3 khi chia 9 dư 6. Còn các số có cơ số =2, số mũ chẵn thì tích của số đó với 3 khi 9 dư 3. Vậy tích \(3.2^{2k+2}\) chia 9 dư 3
-1 chia 9 dư -1
Vậy \(2^{2k+4}\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)chia 9 dư 7+3-1=9 chia hết cho 9
Kết luận: Mệnh đề đúng với mọi n thuộc Z
Tong quat: a^3+1=(a+1)[a^2-a+1]=(a+1)[(a-0,5)^2+0,75]
a^3-1=(a-1)[a^2+a+1]=(a-1)[(a+0,5)^2+0,75]
Tu so cua A=(2+1).[(2-0,5)^2+0,75].(3+1).[(3-0,5)^2+0,75].(4+1).[(4-0,75)^2+0,75]....(10+1).[(10-0,5)^2+0,75]
=3.[1,5^2+0,75].4.[2,5^2+0,75].5.[3,5^2+0,75]....11.[9,5^2+0,75]
Mau so cua A= (2-1).[(2+0,5)^2+0,75].(3-1).[(3+0,5)^2+0,75].(4-1).[(4+0,75)^2+0,75]....(10-1).[(10+0,5)^2+0,75]
=[2,5^2+0,75].2.[3,5^2+0,75].3.[4,5^2+0,75]....9.[10,5^2+0,75]
Vay A=3.[1,5^2+0,75].4.[2,5^2+0,75].5.[3,5^2+0,75]....11.[9,5^2+0,75]/[2,5^2+0,75].2.[3,5^2+0,75].3.[4,5^2+0,75]....9.[10,5^2+0,75]
=(3.4.5...11/1.2.3...9).[(1,5^2+0,75)(2,5^2+0,75)(3,5^2+0,75)...(9,5^2+0,75)/(2,5^2+0,75)(3,5^2+0,75)(4,5^2+0,75)...(10,5^2+0,75)]
=11.10.(1,5^2+0,75)/2.(10,5^2+0,75)
Con bao nhieu ban tu tinh tiep nha
Tai vi may minh bi lag nen khong danh phan so duoc vi vay minh phai tach mau, tu ra. sorry
1)(5-x2).(x4+5x2+25)
2)15.(x-1)-(3x-1)
3)(x2-2)2
4)36x2.(y-1)
5)(7-y).(z-x)
6)(x+3).(x+5)
7)(x-10).(x+2)
8)(x+5).(3y+1)
9)(-(y-x-3)).(y-x+3)
10)(11-x).(y+x)
11)(y-x+3)).(y+x-3)
12)(-(y+2x-5)).(y+2x+5)
13)4.(tz+y2+(-x).y-t2
14)(8-x).(y-x)
a, \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Leftrightarrow156-56x=24x-324\)
\(\Leftrightarrow-80x+480=0\Leftrightarrow x=-6\)
b, \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x-12\right)+1\)
\(\Leftrightarrow15x+25-8x+12=5x+6x-36+1\)
\(\Leftrightarrow7x+37=11x-35\)
\(\Leftrightarrow-4x+72=0\Leftrightarrow x=18\)
c, \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-2x-1=12x-5\)
\(\Leftrightarrow-14x+4=0\Leftrightarrow x=\frac{2}{7}\)
d, \(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)
\(\Leftrightarrow5x-3\left[4x-15x+6\right]=182\)
\(\Leftrightarrow5x-3\left(-11x+6\right)=182\)
\(\Leftrightarrow5x+33x-18-182=0\)
\(\Leftrightarrow38x-200=0\Leftrightarrow x=\frac{100}{19}\)
Đặt \(\frac{EI}{ID}=k\).
Ta có \(S_{DIA}+S_{IAE}=S_{DAC}\left(=\frac{1}{4}S_{DEC}\right)\Rightarrow\left(1+k\right)S_{DIA}=S_{DAC}\)
Lại có : \(\frac{S_{DIC}}{S_{DBC}}=\frac{S_{DEC}}{k+1}:\frac{S_{DEC}}{2}=\frac{2}{k+1}\)
\(\Rightarrow\frac{\left(k+1+1\right)S_{DIA}}{2\left(k+1\right)S_{DIA}}=\frac{2}{k+1}\Rightarrow\frac{k+2}{2k+2}=\frac{2}{k+1}\Rightarrow k=2\)
Vậy thì EI = 2 ID hay \(DI=\frac{DE}{3}\)
sao bằng 1/4 DEC đc vậy