Cho a và b là các số nguyên dương thỏa mãn: a + 1 và b + 2007 chia hết cho 6
Chứng minh rằng: \(4^a+a+b\) chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức \(\text{|}m\text{|}+\text{|}n\text{|}\ge\text{|}m+n\text{|}\) .Dấu = xảy ra khi m,n cùng dấu
\(A\ge\text{|}x-a+x-b\text{|}+\text{|}x-c+x-d\text{|}\)\(=\text{|}2x-a-b\text{|}+\text{|}c+d-2x\text{|}\)
\(\ge\text{|}2x-a-b-2x+c+d|\)=\(\text{|}c+d-a-b\text{|}\)
Dấu = xảy ra khi \(x-a\) và \(x-b\) cùng dấu hay(\(x\le a\) hoặc \(x\ge b\))
\(x-c\) và \(x-d\) cùng dấu hay(\(x\le c\) hoặc \(x\ge d\))
\(2x-a-b\) và \(c+d-2x\) cùng dấu hay (\(x+b\le2x\le c+d\))
Vậy Min A =c+d-a-b khi \(b\le x\le c\)
Khó quá trời Tui học lớp 8 cũng chưa làm ra
Mà hình như cái này là của lớp 9 mà
P= x^8 - x^5 + x^2 - x + 1
=x8-x5+(x-1/2)2+3/4
*Với x\(\ge\)0 =>x8\(\ge\)x5=>x8-x5\(\ge\)0
=>P=x8-x5+(x-1/2)2+3/4>0
*Với x<0=>x5<0 =>-x5>0=>x8-x5>0
=>P=x8-x5+(x-1/2)2+3/4>0
Vậy P luôn nhận giá trị dương
Bạn có chép nhầm đề bài ko đấy !
Ko tồn tại tia phân giác góc B cắt cạnh BC tại D nha bạn!
CAC SO NGUYEN DUONG NHO HON 3 LA :0;1;2
THEO NGUYEN LY DI-REC-LE THI TON TON 3 SO BANG NHAU
GIA SU a;b;c la 3 so bang nhau do
Ta co : c2 +ab<ac+bc+1
c2+c2<c2+c2+1
Vay luon co the chon ra 3 so a;b;c sao cho c2+ab<ac+ab+1
Tick cho minh nha cac ban
Ai tick cho minh thi may man ca nam!!!
sai đề. Vận tốc người thứ nhất bằng 3/4 vận tốc người thứ hai nên người thứ nhất đi chậm hơn.Mà thời gian người thứ nhất đi bằng 2/5 thời gian người thứ hai đi. Vì vận tốc và thời gian là 2 đại lượng tỉ lệ nghịch nên vận tốc càng chậm thì thời gian càng nhiều => sai đề
tỉ số mức sản xuất là: 5 :3 :2
số tiền người 1: 100000. 5/10 = 50000 đồng
số tiền người 2: 100000. 3/10 = 30000 đồng
số tiền người 3 : 100000. 2/10 = 20000 đồng
đs.....
Dân ta phải biết sử ta
Cái gì không biết thì tra google
Bạn thử đi
Các bạn ai đồng ý thì cho mik vài tick
Ta chứng minh: 4a chia 6 dư 4(1)
-Với a=1=>4a =41=4 chia 6 dư 4(thỏa mãn)
Giả sử (1) luôn đúng với mọi n=k=>4k chia 6 dư 4, ta càn chứng minh (1) cũng luôn đúng với mọi n=k+1, chứng minh: : 4k+1 chia 6 dư 4
Ta có: 4k chia 6 dư 4
=>4k đồng dư với 4(mod 6)
=>4k.4 đồng dư với 4.4(mod 6)
=>4k+1 đồng dư với 16(mod 6)
=>4k+1 đồng dư với 4(mod 6)
=>4k+1 chia 6 dư 4
=>thỏa mãn
=>Phép quy nạp đã được chứng minh=>ĐPCM
=>4a chia 6 dư 4
=>4a-4 chia hết cho 6
Lại có: a+1, b+2007 chia hết cho 6
=>a+1+ b+2007 chia hết cho 6
=>a+ b+2008 chia hết cho 6
=>a+b+4+2004 chia hết cho 6
mà 2004 chia hết cho 6
=>a+ b+4 chia hết cho 6
mà 4a-4 chia hết cho 6
=>4a-4+a+b+4 chia hết cho 6
=>4a+a+b chia hết cho 6
Vậy 4a+a+b chia hết cho 6
Do a+1 và b+2007chia hết cho 6. Do đó a,b:lẻ. Thật vậy nếu a,b chẵn
\(\Rightarrow\) a+1,b+2007/chia hết cho 2
\(\Rightarrow\)a+1,b+2007/chia hết cho 6
Điều nói trên trái với giả thiết.
Vậy a,b luôn lẻ.
Do đó:41+MỘTchia hết+2.b
Ta có:một + 1,b+chia hết 2007
\(\Rightarrow\)a+1+b+2007 chia hết cho 6
\(\Rightarrow\)(một +b+1)chia hết+3.2007
\(\Rightarrow\)a+b+1chia hết cho 3.\(\leftrightarrow\)
Ta thấy41+Một+b=(41-1)+(một +b+1)
Lại có:41-1chia hết (4-1)=3\(\leftrightarrow\)(*)
Từ\(\leftrightarrow\)và(*),Suy ra:41+Một +b chia hết+3
Mặt khác(2;3)=1. Do đó: 41+Một+b chia hết cho 6