Giúp với ạ! Đang cần rất gấp ấy ạ! Giúp mình đi ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện: \(x\ge\frac{1}{2}\)
ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)
\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)
\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)
TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)
TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)
( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)
Chắc để là tìm max
\(A=\sqrt{xy+3yz+2z^2}+\sqrt{yz+3xz+2x^2}+\sqrt{xz+3xy+2y^2}\)
Với x,y > 0 ta luôn có \(\sqrt{ab}\le\frac{a+b}{2}\)
Dấu "=" xảy ra khi a = b
Áp dụng ta được:
\(2\sqrt{\frac{3}{2}}\sqrt{xy+3yz+2z^2}\le\frac{3}{2}+xy+3yz+2z^2\)
Tương tự: \(2\sqrt{\frac{3}{2}}\sqrt{yz+3xz+2x^2}\le\frac{3}{2}+yz+3xz+2x^2\)
\(2\sqrt{\frac{3}{2}}\sqrt{xz+3xy+2y^2}\le\frac{3}{2}+xz+3xy+2y^2\)
Cộng theo vế ta được :
\(2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+4xy+4yz+4xz+2x^2+2y^2+2z^2\)
Ngoài ra với mọi số thực x,y,z ta có :
\(x^2+y^2+z^2\ge xy+yz+xz\)
Dấu "=" xảy ra khi x = y = z
\(\Rightarrow2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+6\left(x^2+y^2+z^2\right)\le\frac{9}{2}+6\times\frac{3}{4}=9\)
\(\Rightarrow A\le\frac{3\sqrt{6}}{2}\).
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
\(x=\sqrt[3]{2}+\sqrt[3]{3}\)
\(\Leftrightarrow x^3=2+3+3\sqrt[3]{2.3}\left(\sqrt[3]{2}+\sqrt[3]{3}\right)\)
\(\Leftrightarrow x^3-5=3\sqrt[3]{6}x\)
\(\Leftrightarrow x^9-15x^6+75x^3-125=162x^3\)
\(\Leftrightarrow x^9-15x^6-87x^3-125=0\)(1)
Nếu phương trình (1) có nghiệm hữu tỉ thì nghiệm đó có dạng \(\frac{p}{q}\)với \(p\)là ước của \(125\), \(q\)là ước của \(1\).
Do đó nếu (1) có nghiệm thì nghiệm đó chỉ có thể là thuộc tập hợp: \(\left\{-125,-25,-5,-1,1,5,25,125\right\}\).
Thử lần lượt các giá trị trên ta đều thấy không thỏa mãn.
Do đó phương trình (1) không có nghiệm hữu tỉ.
Mà \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là một nghiệm của phương trình (1).
Do đó \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là số vô tỉ.
VÌ : \(\sqrt{2}\)+\(\sqrt{3}\)là số vô tỉ
=> ....
Mới lớp 8 nên ko bt gì hết ;-;
Mình mới thử chương trình lớp 9 nên chưa hiểu nhiều lắm. Cảm ơn nhé!
Ta có: \(\hept{\begin{cases}x^2+y^2+xy+2y+x=2\left(1\right)\\2x^2-y^2-2y-2=0\left(2\right)\end{cases}}\)
<=> \(3x^2+xy+x-4=0\)
<=> \(x\left(y+1\right)=4-3x^2\)
<=> \(y+1=\frac{4-3x^2}{x}\)
Khi đó, pt (2) <=> \(2x^2-1-\left(y+1\right)^2=0\)
<=> \(2x^2-1-\left(\frac{4-3x^2}{x}\right)^2=0\)
<=> \(2x^2-1-\frac{9x^4-24x^2+16}{x^2}=0\)
<=> \(2x^4-x^2-9x^4+24x^2-16=0\)
<=> \(7x^4-23x^2+16=0\)
<=>> \(7x^4-7x^2-16x^2+16=0\)
<=> \(\left(x^2-1\right)\left(7x^2-16\right)=0\)
<=> \(\orbr{\begin{cases}x=\pm1\\x=\pm\frac{4}{\sqrt{7}}\end{cases}}\)
Với x = 1 => \(y=\frac{4-3.1^2}{1}-1=0\)
(còn lại tt)
\(\hept{\begin{cases}x^2+y^2+xy+2y+x=2\left(1\right)\\2x^2-y^2-2y-2=0\left(2\right)\end{cases}}\)
Lấy \(3\left(2\right)-\left(1\right)\)ta được:
\(3\left(2x^2-y^2-2y-2\right)-\left(x^2+y^2+xy+2y+x\right)=-2\)
\(\Leftrightarrow5x^2-4y^2-8y-4-xy-x=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(5x+4y+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y+1\\x=-\frac{4y+4}{5}\end{cases}}\)
Từ đây bạn thế vào (1) hoặc (2) và giải phương trình bậc hai thu được các nghiệm của hệ phương trình.
Đáp án các nghiệm là: \(\left(-1,-2\right),\left(1,0\right),\left(-\frac{4}{\sqrt{7}},\frac{5}{\sqrt{7}}-1\right),\left(\frac{4}{\sqrt{7}},-\frac{5}{\sqrt{7}}-1\right)\).
ĐKXĐ : \(y+\frac{1}{y}\ge0;y\ne0\)
Ta có : \(\hept{\begin{cases}x+\frac{1}{x^2+1}=y+\frac{1}{y^2+1}\left(1\right)\\x^2+2x.\sqrt{y+\frac{1}{y}}=8x-1\left(2\right)\end{cases}}\)
(1) \(\Leftrightarrow\left(x-y\right)-\frac{x^2-y^2}{\left(x^2+1\right)\left(y^2+1\right)}=0\) \(\Leftrightarrow\left(x-y\right)\left(1-\frac{x+y}{\left(x^2+1\right)\left(y^2+1\right)}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\1-\frac{x+y}{\left(x^2+1\right)\left(y^2+1\right)}=0\end{cases}}\)
Với x = y thay vào (2) ; ta có : \(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)
\(\Leftrightarrow x+2\sqrt{x+\frac{1}{x}}=8-\frac{1}{x}\) ( vì x = y mà y khác 0 => x khác 0 )
Đặt \(a=\sqrt{x+\frac{1}{x}}\) rồi giải p/t
Với : \(1-\frac{x+y}{\left(x^2+1\right)\left(y^2+1\right)}=0\) \(\Leftrightarrow\frac{x^2y^2+y^2+x^2+1-x-y}{\left(x^2+1\right)\left(y^2+1\right)}=0\)
\(\Leftrightarrow\frac{\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{1}{2}+x^2y^2}{\left(x^2+1\right)\left(y^2+1\right)}=0\)
Dễ thấy : VT > 0 => PTVN
....
Phút thứ 1 : Bóng đèn số \(x_1=0\) sáng
Phút thứ 2 : Bóng đèn số \(x_2=\left(216x_1+19\right)mod56=19\)sáng.
Phút thứ 3 : Bóng đèn số \(x_3=\left(216x_2+19\right)mod56=35\) sáng.
Phút thứ 4 : Bóng đèn số \(x_4=\left(216x_3+19\right)mod56=19\) sáng.
.............................................................................................................
Tới đây ta nhận thấy rằng từ phút thứ hai trở đi, chỉ có bóng đèn số 35 và 19 sáng.
Hay nói cách khác, số chu kì lặp là 2. Các phút chẵn thì bóng đèn 19 sáng, còn các phút
lẻ thì bóng đèn số 35 sáng.
Như vậy ở phút thứ 2018 thì bóng đèn số 19 đang sáng.
Mik có lớp 4 thôi seo giúp đc . Seo bn zô zuyên hế . ^~^
xin lỗi nhé