K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

Mik có lớp 4 thôi seo giúp đc . Seo bn zô zuyên hế . ^~^

9 tháng 8 2021

xin lỗi nhé

NM
7 tháng 8 2021

điều kiện: \(x\ge\frac{1}{2}\)

ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)

\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)

\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)

TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)

TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)

( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)

10 tháng 8 2021

=1 nha

6 tháng 8 2021

xy = \(\sqrt{x+r72y6}\)

6 tháng 9 2021

Chắc để là tìm max

\(A=\sqrt{xy+3yz+2z^2}+\sqrt{yz+3xz+2x^2}+\sqrt{xz+3xy+2y^2}\)

Với x,y > 0 ta luôn có \(\sqrt{ab}\le\frac{a+b}{2}\)

Dấu "=" xảy ra khi a = b 

Áp dụng ta được: 

\(2\sqrt{\frac{3}{2}}\sqrt{xy+3yz+2z^2}\le\frac{3}{2}+xy+3yz+2z^2\)

Tương tự: \(2\sqrt{\frac{3}{2}}\sqrt{yz+3xz+2x^2}\le\frac{3}{2}+yz+3xz+2x^2\)

\(2\sqrt{\frac{3}{2}}\sqrt{xz+3xy+2y^2}\le\frac{3}{2}+xz+3xy+2y^2\)

Cộng theo vế ta được : 

\(2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+4xy+4yz+4xz+2x^2+2y^2+2z^2\)

Ngoài ra với mọi số thực x,y,z  ta có : 

           \(x^2+y^2+z^2\ge xy+yz+xz\)

Dấu "=" xảy ra khi x = y = z 

\(\Rightarrow2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+6\left(x^2+y^2+z^2\right)\le\frac{9}{2}+6\times\frac{3}{4}=9\)

\(\Rightarrow A\le\frac{3\sqrt{6}}{2}\).

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

4 tháng 8 2021
R đoá cậu :)))))

Bài tập Tất cả

Bài tập Tất cả

10 tháng 8 2021
Tự lm đi ôi vãi ng ta ko bt mới đăng lên chứ nhỉ
2 tháng 8 2021
????????????????????????????????????????????????????????
2 tháng 8 2021

cờ vua

DD
17 tháng 7 2021

\(x=\sqrt[3]{2}+\sqrt[3]{3}\)

\(\Leftrightarrow x^3=2+3+3\sqrt[3]{2.3}\left(\sqrt[3]{2}+\sqrt[3]{3}\right)\)

\(\Leftrightarrow x^3-5=3\sqrt[3]{6}x\)

\(\Leftrightarrow x^9-15x^6+75x^3-125=162x^3\)

\(\Leftrightarrow x^9-15x^6-87x^3-125=0\)(1)

Nếu phương trình (1) có nghiệm hữu tỉ thì nghiệm đó có dạng \(\frac{p}{q}\)với \(p\)là ước của \(125\)\(q\)là ước của \(1\)

Do đó nếu (1) có nghiệm thì nghiệm đó chỉ có thể là thuộc tập hợp: \(\left\{-125,-25,-5,-1,1,5,25,125\right\}\).

Thử lần lượt các giá trị trên ta đều thấy không thỏa mãn. 

Do đó phương trình (1) không có nghiệm hữu tỉ. 

Mà \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là một nghiệm của phương trình (1). 

Do đó \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là số vô tỉ. 

VÌ : \(\sqrt{2}\)+\(\sqrt{3}\)là số vô tỉ

=> ....

Mới lớp 8 nên ko bt gì hết ;-;

12 tháng 7 2021
Cái này bạn áp dụng công thức của biện luận hệ phương trình là được mờ, thật ra lâu mình chưa sờ tới cũng hơi quên ;)) Vô nghiệm với m = -2 Vô số nghiệm với m = 2
12 tháng 7 2021

Mình mới thử chương trình lớp 9 nên chưa hiểu nhiều lắm. Cảm ơn nhé!

9 tháng 7 2021

Ta có: \(\hept{\begin{cases}x^2+y^2+xy+2y+x=2\left(1\right)\\2x^2-y^2-2y-2=0\left(2\right)\end{cases}}\)

<=> \(3x^2+xy+x-4=0\)

<=> \(x\left(y+1\right)=4-3x^2\) 

<=> \(y+1=\frac{4-3x^2}{x}\)

Khi đó,  pt (2) <=> \(2x^2-1-\left(y+1\right)^2=0\)

<=> \(2x^2-1-\left(\frac{4-3x^2}{x}\right)^2=0\)

<=> \(2x^2-1-\frac{9x^4-24x^2+16}{x^2}=0\)

<=> \(2x^4-x^2-9x^4+24x^2-16=0\)

<=> \(7x^4-23x^2+16=0\)

<=>> \(7x^4-7x^2-16x^2+16=0\)

<=> \(\left(x^2-1\right)\left(7x^2-16\right)=0\)

<=> \(\orbr{\begin{cases}x=\pm1\\x=\pm\frac{4}{\sqrt{7}}\end{cases}}\)

Với x = 1 => \(y=\frac{4-3.1^2}{1}-1=0\)

(còn lại tt)

DD
9 tháng 7 2021

\(\hept{\begin{cases}x^2+y^2+xy+2y+x=2\left(1\right)\\2x^2-y^2-2y-2=0\left(2\right)\end{cases}}\)

Lấy \(3\left(2\right)-\left(1\right)\)ta được: 

\(3\left(2x^2-y^2-2y-2\right)-\left(x^2+y^2+xy+2y+x\right)=-2\)

\(\Leftrightarrow5x^2-4y^2-8y-4-xy-x=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(5x+4y+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y+1\\x=-\frac{4y+4}{5}\end{cases}}\)

Từ đây bạn thế vào (1) hoặc (2) và giải phương trình bậc hai thu được các nghiệm của hệ phương trình. 

Đáp án các nghiệm là: \(\left(-1,-2\right),\left(1,0\right),\left(-\frac{4}{\sqrt{7}},\frac{5}{\sqrt{7}}-1\right),\left(\frac{4}{\sqrt{7}},-\frac{5}{\sqrt{7}}-1\right)\).

8 tháng 7 2021

ĐKXĐ : \(y+\frac{1}{y}\ge0;y\ne0\)

Ta có : \(\hept{\begin{cases}x+\frac{1}{x^2+1}=y+\frac{1}{y^2+1}\left(1\right)\\x^2+2x.\sqrt{y+\frac{1}{y}}=8x-1\left(2\right)\end{cases}}\)              

(1) \(\Leftrightarrow\left(x-y\right)-\frac{x^2-y^2}{\left(x^2+1\right)\left(y^2+1\right)}=0\) \(\Leftrightarrow\left(x-y\right)\left(1-\frac{x+y}{\left(x^2+1\right)\left(y^2+1\right)}\right)=0\) 
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\1-\frac{x+y}{\left(x^2+1\right)\left(y^2+1\right)}=0\end{cases}}\) 

Với x = y thay vào (2) ; ta có : \(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\) 

\(\Leftrightarrow x+2\sqrt{x+\frac{1}{x}}=8-\frac{1}{x}\) ( vì x =  y mà y khác 0 => x khác 0 ) 

Đặt \(a=\sqrt{x+\frac{1}{x}}\) rồi giải p/t

Với : \(1-\frac{x+y}{\left(x^2+1\right)\left(y^2+1\right)}=0\) \(\Leftrightarrow\frac{x^2y^2+y^2+x^2+1-x-y}{\left(x^2+1\right)\left(y^2+1\right)}=0\)

\(\Leftrightarrow\frac{\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{1}{2}+x^2y^2}{\left(x^2+1\right)\left(y^2+1\right)}=0\)

Dễ thấy : VT > 0 => PTVN 

.... 

14 tháng 11 2016

Phút thứ 1 : Bóng đèn số \(x_1=0\) sáng

Phút thứ 2 : Bóng đèn số \(x_2=\left(216x_1+19\right)mod56=19\)sáng.

Phút thứ 3 : Bóng đèn số \(x_3=\left(216x_2+19\right)mod56=35\) sáng.

Phút thứ 4 : Bóng đèn số \(x_4=\left(216x_3+19\right)mod56=19\) sáng.

.............................................................................................................

Tới đây ta nhận thấy rằng từ phút thứ hai trở đi, chỉ có bóng đèn số 35 và 19 sáng. 

Hay nói cách khác, số chu kì lặp là 2. Các phút chẵn thì bóng đèn 19 sáng, còn các phút

lẻ thì bóng đèn số 35 sáng.

Như vậy ở phút thứ 2018 thì bóng đèn số 19 đang sáng.

5 tháng 7 2021

thứ 19