Cho tam giác ABC. Một đường thẳng cắt các cạnh BC, AC theo thứ tự ở D và E và cắt đường thẳng BA ở F. Vẽ hình bình hành BDEH. Đường thẳng đi qua F và song song với BC cắt HA tại I. Chứng minh FI = DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
Ta có
\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
\(=>x^2y^2+y^2z^2+z^2x^2+2\left(xyz\right)\left(x+y+z\right)\ge3xyz\left(x+y+z\right)\)
\(=>\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)
\(=>\frac{1}{\left(x+y+z\right)}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)
\(=>A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)
đặt
\(\frac{1}{xy+yz+zx}=t\)
\(=>A\ge3t^2-2t\)
mà \(\left(3t-1\right)^2\ge0=>9t^2-6t+1\ge0=>3t^2-2t+\frac{1}{3}\ge0\Rightarrow3t^2-2t\ge-\frac{1}{3}\)
\(=>A\ge-\frac{1}{3}\)(dpcm)
Dấu = xảy ra khi x=y=z=1
tinh tuoi con gai bang 1/4 tuoi me , tuoi con bang 1/5 tuoi me . tuoi con gai cong voi tuoi cua con trai
la 18 tuoi . hoi me bao nhieu tuoi ?
a/ \(Q=\sqrt{x}+\sqrt{y}\)
b/ \(\hept{\begin{cases}x+y=2015\\xy=2016\end{cases}}\)
\(Q^2=x+y+2\sqrt{xy}=2015+2\sqrt{2016}\)
\(\Rightarrow Q=\sqrt{2015+2\sqrt{2016}}\)
Q \(=\left(\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}-xy\right):\left(x\sqrt{x}-y\sqrt{x}-x\sqrt{y}+y\sqrt{y}\right)\)
Q\(=\left(x^2-xy+y^2-xy\right):\left[\sqrt{x}\left(x-y\right)-\sqrt{y}\left(x-y\right)\right]\)
Q\(=\left(x^2-2xy+y^2\right):\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)\)
Q \(=\left(x-y\right)^2:\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)\)
Q \(=\left(x-y\right):\left(\sqrt{x}-\sqrt{y}\right)\)
Q \(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right):\left(\sqrt{x}-\sqrt{y}\right)\)
Q \(=\sqrt{x}+\sqrt{y}\)
Do OA = 2R nên xét tam giác vuông OBA có \(sin\widehat{BAO}=\frac{1}{2}\Rightarrow\widehat{BAO}=30^o\Rightarrow\widehat{BAC}=60^o\)
Theo tính chất tiếp tuyến, ta có AB = AC.
Vậy thì tam giác ABC đều. Từ đó \(\widehat{EMF}=\widehat{BAC}=60^o.\)
Trên AC lấy điểm E' sao cho BE = CE'.
Do tam giác ABC đều nên ta có ngay \(\Delta BEM=\Delta CE'M\left(c-g-c\right)\Rightarrow\widehat{BME}=\widehat{CME'}\) (1)
Cũng do tam giác ABC đều nên AB = AC. Lại có BE = CE' nên EE' // BC.
Từ đó ta có \(\widehat{CME'}=\widehat{EE'M}\) (2)
Do EE' // BC nên \(\widehat{EE'A}=\widehat{BCA}=60^o\) (Hai góc đồng vị)
Xét tứ giác EFE'M có \(\widehat{EMF}=\widehat{EE'A}\left(=60^o\right)\) nên nó là tứ giác nội tiếp.
Vậy ta suy ra \(\widehat{EE'M}=\widehat{EFM}\) (Hai góc nội tiếp cùng chắn một cung) (3)
Từ (1), (2), (3) ta có \(\widehat{BME}=\widehat{CME'}=\widehat{EE'M}=\widehat{EFM}\Rightarrow\widehat{BME}=\widehat{EFM}\)
Xét tam giác BEM và tam giác MEF có \(\widehat{EBM}=\widehat{EMF}=60^o\) và \(\widehat{BME}=\widehat{MFE}\)
Vậy thì \(\Delta BEM\sim\Delta MEF\left(g-g\right)\Rightarrow\widehat{BEM}=\widehat{MEF}\) hay EM là tia phân giác của góc BEF.
Tham khảo đi Akashiya Moka
bạn hãy vẽ hình ra nhá.
Gọi I là giao của OA và (O;R) ,Tam giác OBI đều do OI = BI = BO = R ( Do tam giác vuông ABO có OA = 2R suy ra OI bằng R và BI là trung tuyến nên = 1 nửa cạnh huyền OA và = R nốt )
vậy góc BOA bằng 60 vậy góc BAO bằng 30 và BAC bang 60 ( do OA pân giác BAC ) vậy tam giác BAC cân tại A có A bằng 60 suy đều
Có góc BOA bằng 60 suy ra góc AOS bằng 30 ( vì BOS là góc 90 ) mặ khác ÁO bằng 30 suy tam giác ÁO cân tại S
Gọi số sau khi sắp xếp là A.
Ta có: \(1+2+3+4+5+6=21\)
\(\Rightarrow\hept{\begin{cases}A⋮3\\A⋮̸9\end{cases}}\)
\(\Rightarrow\)Thượng đế sẽ giúp bác sắp xếp được. Mình tin là vậy.
Khó quá. Bài lớp 9 thật không? Hay đoán mò?
Vậy làm bài này đi:
Rút gọn: 13 + 23 + 33 + ... + n3
Làm được không?
Kẽ phân giác AD của tam giác ABC, \(AD=l\)
Ta có:
\(S_{ABC}=S_{ABD}+S_{ACD}=\frac{c.l.sin\frac{A}{2}}{2}+\frac{b.l.sin\frac{A}{2}}{2}=\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\left(1\right)\)
Ta lại có:
\(\frac{a.l}{2}\ge\frac{a.h_a}{2}=S_{ABC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a.l}{2}\ge\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\)
\(\Leftrightarrow sin\frac{A}{2}\le\frac{a}{b+c}\le\frac{a}{2\sqrt{bc}}\)
a) Ta thấy \(\left(a+\frac{1}{a}\right)^3=a^3+3a^2.\frac{1}{a}+3a.\frac{1}{a^2}+\frac{1}{a^3}=a^3+\frac{1}{a^3}+2\left(a+\frac{1}{a}\right)^3\)
Vậy thì \(\left(a+\frac{1}{a}\right)^3-3\left(a+\frac{1}{a}\right)=a^3+\frac{1}{a^3}\)
Từ đó suy ra với \(x=\sqrt[3]{2-\sqrt{3}}+\frac{1}{\sqrt[3]{2-\sqrt{3}}}\) thì
\(x^3-3x=\left(\sqrt[3]{2-\sqrt{3}}\right)^3+\left(\frac{1}{\sqrt[3]{2-\sqrt{3}}}\right)^3=2-\sqrt{3}+\frac{1}{2-\sqrt{3}}\)
\(=\frac{7-4\sqrt{3}+1}{2-\sqrt{3}}=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)
Vậy thì \(B=\left(4-3\right)^{2015}=1^{2015}=1.\)
b) \(\left(x^2-4x\right)^2+9x^2-36x+20=0\)
\(\Leftrightarrow\left(x^2-4x\right)^2+9\left(x^2-4x\right)+20=0\)
Đặt \(x^2-4x=t,\) phương trình trở thành \(t^2+9t+20=0\Rightarrow\orbr{\begin{cases}t=-4\\t=-5\end{cases}}\)
Với t = -4, ta có \(x^2-4x=-4\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Với t = -5, ta có \(x^2-4x=-5\Rightarrow x^2-4x+5=0\Rightarrow\left(x-2\right)^2+1=0\) (Vô nghiệm)
Vậy phương trình có nghiệm x = 2.
a) Có cô Huyền giải rồi
b)Ta có: \(\left(x^2-4x\right)^2+9x^2-36x+20=0\)
\(\Leftrightarrow\left(x.x-4x\right)^2+\left(9x.9x\right)-36x+20=0\)
\(\Leftrightarrow\left(x.x-4x\right)^2+\left(81x\right)^2-36x+20=0\) (1)
Từ (1) , Ta tìm delta (kí hiệu: \(\Delta\))
Sau khi tìm delta xong, sẽ có 3 trường hợp xảy ra
_Nếu \(\Delta>0\)thì x sẽ có 2 nghiệm phân biệt
_ Nếu \(\Delta=0\)thì phương trình gồm 1 nghiệm
_ Nếu \(\Delta< 0\)thì phương trình vô nghiệm
Tùy thuộc vào mỗi bài sẽ xảy ra 1 trong 3 trường hợp trên. Bạn chọn 1 trong 3 trường hợp để giải bài đó (với điều kiện phải tìm được delta). Bài này mình chỉ hướng dẫn bạn vậy thôi! Vì mình mới lớp 6! Chỉ có thể hướng dẫn làm bài!
bạn thik op à
gì vậy bạn ?