K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HD
31 tháng 8 2016

Em tham khảo nhé

31 tháng 10 2018

Tham khảo

30 tháng 8 2016

còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)

mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa 

30 tháng 8 2016

lâu nay lười giải quá nhưng thôi mình giải cho bạn.

câu 1: ta gọi 2 số đó là a và b. Ta có:

\(a=x^2+y^2\)

\(b=n^2+m^2\)

=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)

bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2

1 tháng 9 2016

T hỏi cô tớ và cô t nghĩ 1 hồi và giải thế này : 

26 tháng 11 2018

Đùa NGƯỜI ÀAAAAA

26 tháng 8 2016

Đặt \(\sqrt{x^2-x+1}=a\left(ĐK:a>0\right)\)

\(pt\Leftrightarrow\frac{\left(x^6+3x^4a\right)\left(4-a^2\right)}{4\left(2+a\right)a^2}=a\left(2-a\right)\)

\(\Leftrightarrow\left(x^6+3x^4a\right)\left(4-a^2\right)=4a^3\left(4-a^2\right)\)

\(\Leftrightarrow\left(4-a^2\right)\left(x^6+3x^4a-4a^3\right)=0\)

TH1: \(4-a^2=0\Leftrightarrow\orbr{\begin{cases}a=-2\left(l\right)\\a=2\left(n\right)\end{cases}}\)

Với a = 2 , \(\sqrt{x^2-x+1}=2\Rightarrow x^2-x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}+1}{2}\\x=\frac{-\sqrt{13}+1}{2}\end{cases}}\)

TH2: \(x^6+3x^4a-4a^3=0\Rightarrow x^6-x^4a+4x^4a-4x^2a^2+4x^2a^2-4a^3=0\)

\(\Leftrightarrow\left(x^2-a\right)\left(x^4+4x^2a+4a^2\right)=0\Leftrightarrow\left(x^2-a\right)\left(x^2+2a\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=a\\x^2=-2a\left(l\right)\end{cases}}\)

Với \(x^2=a\Rightarrow x^2=\sqrt{x^2-x+1}\)

Đến đây bình phương và tìm ra nghiệm.

26 tháng 8 2016

Khó ghê, có quản lí mới giải được

26 tháng 8 2016

ĐK: \(\hept{\begin{cases}x^3+2x+4\ge0\\x^3-2x+4\ge0\end{cases}}\)

Đặt: \(\hept{\begin{cases}a=\sqrt{x^3+2x+4}\left(a\ge0\right)\\b=\sqrt{x^3-2x+4}\left(b\ge0\right)\end{cases}\Rightarrow\hept{\begin{cases}a^2=x^3+2x+4\\b^2=x^3-2x+4\end{cases}}\Rightarrow a^2-b^2=4x\Rightarrow x=\frac{a^2-b^2}{4}}\) 

\(pt\Leftrightarrow\left[1+\left(\frac{a^2-b^2}{4}\right)\right]a+\left[1-\left(\frac{a^2-b^2}{4}\right)\right]b=4\) 

\(\Leftrightarrow\left(4+a^2-b^2\right)a+\left(4-a^2+b^2\right)b=16\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=16\) (1)

Từ pt, ta có: \(\left(1+x\right)a-\left(1-x\right)b=4\)

\(\Leftrightarrow a+b+\left(a-b\right)x=4\) (2)

Thay (1) và (2) vào, ta có:

\(\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=4\left[a+b+\left(a-b\right)x\right]\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=4\left(a-b\right)x\)

\(\Leftrightarrow\left(a-b\right)\left[\left(a+b\right)\left(a-b\right)-4x\right]=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2-4x\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a^2-b^2=4x\end{cases}}\)

Với \(a=b\) , ta có: \(\sqrt{x^3+2x+4}=\sqrt{x^3-2x+4}\Leftrightarrow x=0\left(TM\right)\)

Với \(a^2-b^2=4x\) , ta có: \(x^3+2x+4-\left(x^3-2x+4\right)=4x\)

\(\Leftrightarrow4x=0\)

\(\Rightarrow x=0\)

Vậy:.........


 

26 tháng 8 2016

Lớp mấy đây, lớp 8 mà đây á

25 tháng 8 2016

mấy bài này ns thiệt mk chả hỉu j...cg đơn giản thoy...vì mk ms học lp 6 mừ...hehe^^

26 tháng 8 2016

Cho mình sửa lại  từ D hạ đường vuông góc với BD 

26 tháng 8 2016

?o?n th?ng f: ?o?n th?ng [B, C] ?o?n th?ng h: ?o?n th?ng [A, B] ?o?n th?ng i: ?o?n th?ng [A, C] ?o?n th?ng m: ?o?n th?ng [B, D] ?o?n th?ng n: ?o?n th?ng [F, E] ?o?n th?ng p: ?o?n th?ng [C, E] ?o?n th?ng q: ?o?n th?ng [D, M] B = (-1.62, 1) B = (-1.62, 1) B = (-1.62, 1) C = (3.92, 1.06) C = (3.92, 1.06) C = (3.92, 1.06) ?i?m A: ?i?m tr�n g ?i?m A: ?i?m tr�n g ?i?m A: ?i?m tr�n g ?i?m D: Giao ?i?m c?a j, i ?i?m D: Giao ?i?m c?a j, i ?i?m D: Giao ?i?m c?a j, i ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m F: Giao ?i?m c?a k, h ?i?m F: Giao ?i?m c?a k, h ?i?m F: Giao ?i?m c?a k, h ?i?m M: Trung ?i?m c?a B, E ?i?m M: Trung ?i?m c?a B, E ?i?m M: Trung ?i?m c?a B, E

Gọi F là giao điểm của ED và AB.

Xét tam giác BEF có BD là đường cao đồng thời phân giác nên nó là tam giác cân. Vậy thì D là trung điểm EF.

Từ đí suy ra ID // AB hay \(\widehat{DIC}=\widehat{ABC}\). Mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{DIC}=\widehat{ACB}\)

Vậy tam giác DIC cân tại D hay DI = DC.

Xét tam giác vuông BED có DI là trung tuyến ứng với cạnh huyền nên BE = 2 ID = 2 DC (đpcm).

25 tháng 8 2016

Michelle Nguyen trên wolfram giải đúng đó 

25 tháng 8 2016

hai chữ số tận cùng là 13

25 tháng 8 2016

Ta thấy \(\widehat{FEA}=\widehat{BED}=90^o-\widehat{EBD}\)

Tương tự: \(\widehat{EFA}=90^o-\widehat{FCD}\)

Mà \(\widehat{EBD}=\widehat{FCD}\) nên \(\widehat{FEA}=\widehat{EFA}\). Vậy tam giác AEF cân tại A. Do AM là trung tuyến nên suy ra AM cũng là đường cao hay AM // BC.

Từ đó suy ra M chuyển động trên đường thẳng qua A, song song với BC.

25 tháng 8 2016

Cô Huyền ơi em muốn lấy lại nick, có bạn dò ra mật khẩu nick em và đổi rồi ạ huhu