giải hệ phương trình \(\hept{\begin{cases}xy\left(x-y\right)^2=25\\\sqrt{x^2-xy}+\sqrt{xy-y^2}=\frac{9}{2}\end{cases}}\)
Em ra nghiệm lẻ quá không viết được, mọi người giúp em với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy=\frac{1}{t}.txy\le\frac{t^2x^2+y^2}{2t}=\frac{\left(3+\sqrt{5}\right)x^2+y^2}{1+\sqrt{5}}\)\(t^2=\frac{3+\sqrt{5}}{2}\)
\(\frac{2\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\left(3+\sqrt{5}\right)\left(2x^2+y^2+z^2+1\right)}\)
\(K=\frac{x^2+y^2+z^2+1}{xy+yz+z}=\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{2.\frac{1+\sqrt{5}}{2}x.y+\left(1+\sqrt{5}\right)yz+2.\frac{1+\sqrt{5}}{2}.z}\)
\(\ge\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\frac{3+\sqrt{5}}{2}x^2+y^2+\frac{1+\sqrt{5}}{2}\left(y^2+z^2\right)+z^2+\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{\frac{3+\sqrt{5}}{2}}=\sqrt{5}-1=k\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=1\\y=\frac{1+\sqrt{5}}{2}\\z=\frac{1+\sqrt{5}}{2}\end{cases}}\)
\(M=\frac{x^2+y^2+z^2+1}{xy+y+z}=\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{2.x.\frac{\sqrt{5}-1}{2}y+\left(\sqrt{5}-1\right)y+2.\frac{\sqrt{5}-1}{2}.z}\)
\(\ge\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{x^2+\frac{3-\sqrt{5}}{2}y^2+\frac{\sqrt{5}-1}{2}\left(y^2+1\right)+\frac{3-\sqrt{5}}{2}+z^2}=\sqrt{5}-1=m\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\y=1\\z=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
\(km+k+m=4\)
goi d là phần dư của abc và mnk khi chia chia 13
ta có \(\overline{abcmnk}=1000.\overline{abc}+\overline{mnk}=1000\left(\overline{abc}-a\right)+\left(\overline{mnk}-a\right)+1001a\)
ta có \(\left(\overline{abc}-a\right),\left(\overline{mnk}-a\right)\text{ chia hết cho 13}\)
mà 1001a=13.77a chia hết cho 13
Do đó \(abcmnk\) chia hết cho 13
Gọi số dư của phép chia abc và mnk là a (a \(\in\)N ; 0 < a < 13)
Ta có :
abcmnk = 1000abc + mnk
= 1000(abc - a) + (mnk - a) + 1001a
Vì abc - a chia hết cho 13 ; mnk - a chia hết cho 13 ; 1001a = 13.77a chia hết cho 13
=> 1000(abc - a) + (mnk - a) + 1001 a chia hết cho 13
=> (đpcm)
ta có \(n^2-1< 999\Rightarrow n\le31\)
\(\hept{\begin{cases}100a+10b+c=n^2-1\\100c+10b+a=n^2-4n+4\end{cases}\Rightarrow99\left(a-c\right)=4n-5}\)
Do đó 4n-5 phải chia hết cho 99
hay \(4n-5=99m\Leftrightarrow4n=99\left(m-1\right)+104\Rightarrow m-1=4h\)
vậy ta có \(4n-5=99\left(4h+1\right)\Rightarrow n=99h+26\Rightarrow n=26\)
Do đó số cần tìm là \(26^2-1=675\)
mình chịu thui câu hỏi này cứ như chưa học âý kkkkkk
Ta có: \(x^2-6x+11=\left(x-3\right)^2+2\ge2;\forall x\)
Lại có: \(\left(\sqrt{x+2}+\sqrt{4-x}\right)^2\le\left[\left(\sqrt{x+2}\right)^2+\left(\sqrt{4-x}\right)^2\right]\left(1+1\right)=2\)( bunhiacopxki )
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\sqrt{x-2}=\sqrt{4-x}\end{cases}\Leftrightarrow}x=3\)
Vậy pt có no x=3
* Còn gì sai sót Admin sẽ sửa lại cho nhé :)))
I. Complete the conversation with the sentences from the box. Write the letters of the sentences.
Bob: (1) D. How many hours do you watch TV every day?
David: Mostly for one hour. (2) F. On weekends I may watch for two hours or more.
Bob: (3) B. Why do you watch television?
David: I watch it for information and entertainment.
Bob: (4) E. Which is your favourite TV channel?
David: I to watch sports channel ESPN.
Bob: (5) A. Don’t you watch any other channel?
David: I also watch Discovery, History and some news channels.
Bob: (6) C. What is your opinion about cartoon films?
David: Most of the cartoon movies refresh our mind.
Dấu hiệu cần quan tâm là điểm kiểm tra môn Tiếng Anh của nhóm học sinh lớp 7A
Gía trị(x) | 4 | 5 | 6 | 8 | 9 | |
Tần số(y) | 2 | 3 | 4 | 4 | 7 | N=20 |
Điểm TBC:(4.2+5.3+6.4+8.4+9.7)("." là nhân)
Số HS đạt điểm TB trở lên:15 bạn
Số HS cả lớp:15/2.5=
Gọi số học sinh của lớp 7A là x
Số hs đạt trên trung bình của lớp 7A là:
18 Học sinh (bạn lấy các hs dưới trung bình cộng lại)
Số học sinh lớp 7A là:
18 = 2/5 . x
=> x = 45
Vậy lớp 7A có 45 học sinh.
1.What is __on__ TV tonight?
2. You can see how people compete with each other___in___ a game show.
3. The Wingless penguin is ___on___ Disney channel, __at__ 8 o' clock Friday night.
4. Conedies help people relax___after___ a hard working day
5. My brother is interested __in__ Nature programe
6. The talk show is on __from__ 8 o'clock to 10 o'clock.
7. Cartoons often use animals __are__ the main characters.
8. He turned __on__ the televison to watch the news.
1. What is _____ on ______ TV tonight?
2. You can see how people compete with each other _____ in ______ a game show.
3. The Wingless Penguin is _____ on _____ Disney channel, _____ at _____ 8 o’clock Friday night.
4. Comedies help people relax _____ after ______ a hard working day.
5. My brother is interested _____ in ______ Nature programme.
6. The talk show is on _____ from ______ 8 o’clock to 10 o’clock.
7. Cartoons often use animals _____ for ______ the main characters
8. He turned ______ on _____ the television to watch the news.
ta có
\(\hept{\begin{cases}xy\left(x-y\right)^2=25\\\sqrt{x^2-xy}+\sqrt{xy-y^2}=\frac{9}{2}\end{cases}}\)
từ \(\left(\sqrt{x^2-xy}+\sqrt{xy-y^2}\right)^2=\frac{81}{4}\Leftrightarrow x^2-y^2+2\sqrt{xy.\left(x-y\right)^2}=\frac{81}{4}\)
\(\Leftrightarrow x^2-y^2+2\sqrt{25}=\frac{81}{4}\Leftrightarrow x^2-y^2=\frac{41}{4}\Rightarrow x^2=y^2+\frac{41}{4}\)
\(\Rightarrow\left(\sqrt{x^2-xy}+\sqrt{xy-y^2}\right)=\frac{9}{2}\Leftrightarrow\sqrt{\frac{41}{4}-\left(xy-y^2\right)}+\sqrt{xy-y^2}=\frac{9}{2}\)
\(\Rightarrow xy-y^2=4\)vậy ta có \(\hept{\begin{cases}xy-y^2=4\\x^2-y^2=\frac{41}{4}\end{cases}}\Rightarrow16\left(x^2-y^2\right)=41\left(xy-y^2\right)\)
\(\Rightarrow\orbr{\begin{cases}x=y\\x=\frac{25}{16}y\end{cases}}\)mà \(x^2=y^2+\frac{41}{4}\Rightarrow\left(\frac{25}{16}y\right)^2=y^2+\frac{41}{4}\Rightarrow y=\pm\frac{8}{3}\Rightarrow x=\pm\frac{25}{6}\)
thay lại hệ để tìm nghiệm thỏa mãn đk căn thức là xong nhé
\(ĐK:x^2-xy\ge0;xy-y^2\ge0\)
Ta viết hệ phương trình về dạng: \(\hept{\begin{cases}x\left(x-y\right).y\left(x-y\right)=25\\\sqrt{x\left(x-y\right)}+\sqrt{y\left(x-y\right)}=\frac{9}{2}\end{cases}}\)
Đặt \(\sqrt{x\left(x-y\right)}=u,\sqrt{y\left(x-y\right)}=v\left(u,v>0\right)\)thì hệ trở thành: \(\hept{\begin{cases}u^2v^2=25\\u+v=\frac{9}{2}\end{cases}}\)
* Xét uv = 5 thì u, v là nghiệm của phương trình \(s^2-\frac{9}{2}s+5=0\Leftrightarrow\orbr{\begin{cases}s=\frac{5}{2}\\s=2\end{cases}}\)
+) \(u=\frac{5}{2},v=2\Rightarrow\hept{\begin{cases}x\left(x-y\right)=\frac{25}{4}\\y\left(x-y\right)=4\end{cases}}\Leftrightarrow\left(x-y\right)^2=\frac{9}{4}\)\(\Leftrightarrow\orbr{\begin{cases}x-y=\frac{3}{2}\Rightarrow\left(x,y\right)=\left(\frac{25}{6},\frac{8}{3}\right)\\x-y=-\frac{3}{2}\Rightarrow\left(x,y\right)=\left(-\frac{25}{6},-\frac{8}{3}\right)\end{cases}}\)
+) \(u=2,v=\frac{5}{2}\Rightarrow\hept{\begin{cases}x\left(x-y\right)=4\\y\left(x-y\right)=\frac{25}{4}\end{cases}}\Leftrightarrow\left(x-y\right)^2=\frac{-9}{4}\left(L\right)\)
* Xét uv = -5 thì u, v là nghiệm của phương trình \(r^2-\frac{9}{2}r-5=0\Leftrightarrow\orbr{\begin{cases}r=\frac{9+\sqrt{161}}{4}\\r=\frac{9-\sqrt{161}}{4}\end{cases}}\)(loại vì có 1 nghiệm là số âm)
Vậy hệ có 2 nghiệm \(\left(x,y\right)=\left\{\left(\frac{25}{6},\frac{8}{3}\right);\left(\frac{-25}{6},\frac{-8}{3}\right)\right\}\)