Tìm chữ số tận cùng của \(S=2^1+3^5+4^9+.....+2014^{8049}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này rất hay, cô sẽ giải thích cho em nhé :)
Xét tam giác FAH và tam giác FAI có:
AI = AH ( Vì cùng bằng AE).
AF chung.
Ta cần chứng minh góc FAI = góc HAF.
Gọi giao điểm AB với IE là M, của AC với EH là N.
Khi đó ta có góc FAI = góc IAM + MAE + EAF = góc EAF + 2 góc FAN. (1)
góc HAF = góc FAN + NAH, mà góc NAH = góc EAF + góc FAN nên góc HAF = góc EAF + 2 góc FAN. (2)
Từ (1), (2) suy ra góc FAI = góc HAF.
Vậy tam giác FAI bằng tam goác FAH (c-g-c).
và đây là hình,nó có vẻ hơi xấu và sai 1 số chỗ nhỏ bạn thông cảm
\(a^{100}+b^{100}=a^{101}+b^{101}\Leftrightarrow a^{100}-a^{101}=b^{101}-b^{100}\Rightarrow a^{100}\left(1-a\right)=b^{100}\left(b-1\right)\)
\(\Rightarrow-a^{100}\left(a-1\right)=b^{100}\left(b-1\right)\)
1./ Nếu b = 1 => a = 1 (do a;b>0) nên tổng S = a2010 + b2010 = 2
2./ Nếu b khác 1 \(\Rightarrow\frac{a-1}{b-1}=\frac{b^{100}}{a^{100}}=\left(\frac{b}{a}\right)^{100}\)(1)
Tương tự từ: \(a^{102}+b^{102}=a^{101}+b^{101}\Leftrightarrow a^{102}-a^{101}=b^{101}-b^{102}\Rightarrow a^{101}\left(a-1\right)=b^{101}\left(1-b\right)\)
\(\Rightarrow\frac{a-1}{b-1}=\frac{b^{101}}{a^{101}}=\left(\frac{b}{a}\right)^{101}\)(2)
Từ (1) và (2) \(\left(\frac{b}{a}\right)^{100}=\left(\frac{b}{a}\right)^{101}\Rightarrow\frac{b}{a}=1\Rightarrow a=b\)
Từ: a100 + b100 = a101 + b101 => 2a100 = 2 a101 => a100 = a101 => a = 1; b = 1
Và tổng S = a2010 + b2010 = 2.
ĐK: a,b,c khác 0 và a+b+c khác 0
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\Rightarrow\left(a+b\right)\left(\frac{c^2+ca+ab+bc}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> hoặc a=-b hoặc b=-c hoặc c=-a.
Khi đó đẳng thức:
\(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)đúng với mọi lũy thừa lẻ 2n+1. ĐPCM.
Từ \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)
\(\Rightarrow\frac{x^2+x\left(y+z\right)}{y+z}+\frac{y^2+y\left(z+x\right)}{z+x}+\frac{z^2+z\left(x+y\right)}{x+y}=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
\(\Rightarrow P=\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)\left(3x^8+2y^{10}+z^4\right)=0\)
Vậy P=0
xét trường hợp tứ giác lồi ABCD không phải là hình thang
nối BD , gọi I là trung điểm của BD
xét tam giác ABD ta được
M là trung điểm AB (GT)
I là trung điểm của BD ( như cách gọi)
=> MI là đường trung bình của tam giác ABD
=> MI // AD ; MI = 1/2 AD (1)
xét tam giác DBC ta có
I là trung điểm của BD ( như cách gọi)
N là trung điểm của CD ( GT)
=> NI là đường trung bình của tam giác DBC
=> NI //BC ; NI = 1/2BC (2)
cộng theo vế của (1) và (2) ta được
NI + MI = 1/2 (AD + BC) hay \(MI+NI=\frac{BC+AD}{2}\)(3)
vì ABCD không phải là hình thang nên I không thuộc MN hay 3 điểm I,M,N không thẳng hàng. Ta được tam giác MIN.
áp dụng định lí bất đẳng thức tm giác vào tm giác MIN ta có
MN < MI + NI (4)
kết hợp (3) và (4) ta được
\(MN<\frac{BC+AD}{2}\)(5)
* Xét trường hợp ABCD là hình thang ( AD // BC)
ta có
M là trung điểm AB,
N là trung điểm CD
=> MN là đường trung bình của hình thang ABCD
=> \(MN=\frac{BC+AD}{2}\) (6)
kết hợp (5) và (6) ta được
\(MN\le\frac{BC+AD}{2}\)
a + b + c = 0 => (a + b + c)2 = 0 => a2 + b2 + c2 = -2(ab + bc + ca) (1)
=> (a2 + b2 + c2)2 = 4(ab + bc + ca)2 (2) => a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 4(a2b2 + b2c2 + c2a2 + 2(ab2c + abc2 + a2bc)).
=> a4 + b4 + c4 = 2a4b2 + 2b2c2 + 2c2a2 + 8abc(a + b + c)
a) => a4 + b4 + c4 = 2(a4b2 + b2c2 + c2a2) (ĐPCM - a)
b) Từ (1) => 2(ab + bc + ca) = -(a2 + b2 + c2 )
=> 4(ab + bc + ca)2 = (a2 + b2 + c2 )2 = a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2.
Thay từ (a) 2a2b2 + 2b2c2 + 2c2a2 = a4 + b4 + c4
=> 4(ab + bc + ca)2 = 2(a4 + b4 + c4)
Hay a4 + b4 + c4 = 2(ab + bc + ca)2 (ĐPCM - b)
c) Từ (2) (a2 + b2 + c2)2 = 4(ab + bc + ca)2 = 4(a2b2 + b2c2 + c2a2 + 2(ab2c + abc2 + a2bc)) = 4(a4b2 + b2c2 + c2a2)+ 8abc(a + b + c)
=> (a2 + b2 + c2)2 = 4(a4b2 + b2c2 + c2a2) = 2(a4 + b4 + c4) (Từ a)
Hay a4 + b4 + c4 = 1/2 * (a2 + b2 + c2)2 (ĐPCM - c).
Ta có:
\(1=4.0+1\)
\(2^1=2^{4.0+1}=2^0.2^1=2\)
\(5=4.1+1\)
\(3^5=3^{4.1+1}=3^4.3=81.3=\left(...3\right)\)
\(\Rightarrow b^{4.k+1}\)sẽ có tận cùng bằng tận cùng của b\(\left(k\in N\right)\)
Vậy chữ số tận cùng của S chình bằng chữ số tận cùng của :
B=2+3+4+5+...+2014
Số số hạng của B là:
(2014-2):1+1=2013(số hạng)
Tổng B là :
\(\left(2014+2\right).2013:2=2029104\)
Vậy tổng S có tận cùng là 4
Đáp số: 4
lớp 8 thì mình chịu