K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

Ta có \(a^4+ab^3=2a^3b^2\)

Do a>0

=> \(a^3+b^3=2a^2b^2\)

<=> \(\frac{a}{b^2}+\frac{b}{a^2}=2\)

Đặt \(\frac{a}{b^2}=x;\frac{b}{a^2}=y\)(x,y là số hữu tỉ)

=>\(\hept{\begin{cases}x+y=2\\x.y=\frac{1}{ab}\end{cases}}\)=> \(\hept{\begin{cases}x=2-y\\xy=\frac{1}{ab}\end{cases}}\)

=> \(\sqrt{1-\frac{1}{ab}}=\sqrt{1-y\left(2-y\right)}=\sqrt{y^2-2y+1}=|y-1|\)là số hữu tỉ

=> ĐPCM

Vậy \(\sqrt{1-\frac{1}{ab}}\)là số hữu tỉ

4 tháng 7 2019

ĐKXĐ \(x\ge1\)

<=> \(2x^2-4x+18=6\sqrt{x-1}+6\sqrt[3]{2x+4}\)

<=> \(2\left(x-2\right)^2+3\left(x-2\sqrt{x-1}\right)+\left(x+10-6\sqrt[3]{2x+4}\right)=0\)

<=> \(2\left(x-2\right)^2+\frac{3\left(x^2-4x+4\right)}{x+2\sqrt{x-1}}+\frac{x^3+30x^2-132x+136}{\left(10+x\right)^2+6\left(10+x\right)\sqrt[3]{2x+4}+\sqrt[3]{\left(2x+4\right)^2}}=0\)

<=> \(2\left(x-2\right)^2+\frac{3\left(x-2\right)^2}{x+2\sqrt{x-1}}+\frac{\left(x+34\right)\left(x-2\right)^2}{MS}=0\)

<=> \(\orbr{\begin{cases}x=2\\2+\frac{3}{x+2\sqrt{x-1}}+\frac{34+x}{MS}=0\left(2\right)\end{cases}}\)

PT (2) vô nghiệm Với \(x\ge1\)

Vậy x=2

4 tháng 7 2019

Đề đúng chưa bạn??

4 tháng 7 2019

Đặt \(\sqrt[3]{3x-2}=a\)

<=> \(\hept{\begin{cases}x^3+2=3a\\a^3+2=3x\end{cases}}\)

=> \(\left(x-a\right)\left(x^2+ax+a^2\right)+3\left(x-a\right)=0\)

<=> \(\left(x-a\right)\left(x^2+ax+x^2+3\right)=0\)

Mà \(x^2+ax+x^2+3>0\)

=> \(x=a\)

=> \(x=\sqrt[3]{3x-2}\)

=> \(x^3-3x+2=0\)

=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

4 tháng 7 2019

Bài 2 xét x=0 => A =0

xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)

để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)

=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?

4 tháng 7 2019

1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)

=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)

\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)

\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)

=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

=> M=0

Vậy M=0 

3 tháng 7 2019

\(3^{2012}-1=\left(4-1\right)^{2012}-1=BS4^{2012}+1-1\)

\(=BS4^{2012}=BS2^{2014}⋮2^{2014}\)

ĐPCM

30 tháng 6 2019

Bài bạn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★  có vài chỗ sai xót cần sửa lại

Còn đây là cách của mình

Để A= \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên 

thì đồng thời \(\sqrt{\frac{2005}{x+y}}\);\(\sqrt{\frac{2005}{y+z}}\);\(\sqrt{\frac{2005}{x+z}}\)là số hữu tỉ

Xét \(\sqrt{\frac{2005}{x+y}}\)là số hữu tỉ 

+  \(2005⋮x+y\)

Do 2005 có duy nhất ước 1 là số chính phương

=> \(x+y=2005\)

Khi đó \(A=1+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số chính phương khi \(\sqrt{\frac{2005}{y+z}}=\sqrt{\frac{2005}{x+z}}=1\)hoặc\(=\frac{1}{2}\)

=> \(x=y=\frac{2005}{2}\)loại

\(x+y⋮2005\)và \(x+y\ne2005\)

=> \(x+y=2005.k^2\)\(k\inℕ^∗,k>1\))

Tương tự :\(y+z=2005.h^2\)

                \(x+z=2005.g^2\)\(h,g\inℕ^∗;h,g>1\)=> \(2\left(x+y+z\right)=2005\left(k+h+g\right)\)

=> \(A=\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\)

Mà \(A\ge1\)

=> \(\frac{3}{2}\ge\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\ge1\)

=> \(\frac{1}{k}+\frac{1}{h}+\frac{1}{g}=1\)

Giả sử \(k\ge h\ge g\)=> \(\frac{1}{k}\le\frac{1}{h}\le\frac{1}{g}\)

=> \(1\le\frac{3}{g}\)=> \(g\le3\)Mà g>1 => \(g\in\left\{2;3\right\}\)

Với \(g=2\)=> \(k+h\)chẵn => \(\frac{1}{k}+\frac{1}{h}=\frac{1}{2}\)=> \(\frac{h+k}{k.h}=\frac{1}{2}\)=> \(k.h\)chẵn => k ; h chẵn

\(\frac{1}{2}\le\frac{2}{h}\)=> \(h\le4\)=> \(h\in\left\{2;4\right\}\)

Thay vào ta được \(h=4;k=4\)

Khi đó \(\hept{\begin{cases}x+y=2005.4\\y+z=2005.16\\x+z=2005.16\end{cases}}\)= >\(\hept{\begin{cases}x=2005.2\\y=2005.2\\z=2005.14\end{cases}}\)

Vậy \(\left(x,y,z\right)=\left(2005.2;2005.2;2005.14\right)\)và các hoán vị

Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì

\(\hept{\begin{cases}\frac{2005}{x+y}\\\frac{2005}{y+z}\\\frac{2005}{x+z}\end{cases}}\)là bình phương của 1 số hữu tỉ

Gỉa sử đặt \(\frac{2005}{x+y}=\left(\frac{a}{b}\right)^2\Leftrightarrow\frac{a^2\left(x+y\right)}{b^2}=2005\)

\(\Rightarrow\orbr{\begin{cases}a^2⋮2005\\x+y⋮2005\end{cases}}\)

Xét \(a^2⋮2005\Rightarrow a^2=2005k\left(k\inℕ^∗\right)\)

\(\Rightarrow\frac{2005}{x+y}=\frac{2005k}{b^2}\)\(\Rightarrow b^2=\left(x+y\right)k\)

mà x,y nguyên dương=> x+y=k

\(\Rightarrow b^2⋮2005\)\(\Rightarrow x+y⋮2005\)\(\Rightarrow x+y=2005\)

Tương tự y+z=z+x=2005

Thay vào ta thấy không có giá trị x,y,z thỏa mãn đề bài

Xét \(x+y⋮2005\)

\(\Rightarrow\frac{2005}{x+y}=\frac{1}{h^2}\left(h\inℕ^∗\right)\)

Tương tự \(\frac{2005}{y+z}=\frac{1}{m^2},\frac{2005}{x+z}=\frac{1}{n^2}\left(m,n\inℕ^∗\right)\)

Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì

\(\frac{1}{h}+\frac{1}{m}+\frac{1}{n}⋮3\)

\(\Rightarrow2005⋮3\)(vô lí)

Vậy không có giá trị x,y,z nguyên dương thỏa mãn đề bài

P/s: Em không biết đúng không nữa, mong cô sửa hộ

20 tháng 3 2018

\(\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2017^2}+\frac{1}{2018^2}}\)\)

Với n thuộc N*, ta có:

\(\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{2\left(n+1-n-1\right)}{n\left(n+1\right)}}\)\)

\(\(=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2.1.\frac{1}{n}-2.1.\frac{1}{n+1}-2.\frac{1}{n}.\frac{1}{\left(n+1\right)}}\)\)

\(\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n-1}\right)^2}=1+\frac{1}{n}-\frac{1}{n-1}\)\). Áp dụng vô bài, ta có:

\(\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{2017^2}+\frac{1}{2018^2}}\)\)

\(\(=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)\)

\(\(=2016+\frac{1}{2}-\frac{1}{2018}=2016\frac{504}{1009}\)\)

P/s: Lại là thằng quỷ Thắng

28 tháng 6 2017

Xét số hạng tổng quát

 \(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=1^2+\left(\frac{1}{k}\right)^2+\left(\frac{1}{k+1}\right)^2+2.1.\frac{1}{k}-2.\left(\frac{1}{k}.\frac{1}{k+1}\right)-2.1.\frac{1}{k+1}\)

\(=\left(1+\frac{1}{k}-\frac{1}{k+1}\right)^2\)

( Vì \(\frac{1}{k}-\frac{1}{k\left(k+1\right)}-\frac{1}{k+1}=\frac{k+1-1-k}{k\left(k+1\right)}=0\) )

Vậy thì \(\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=1+\frac{1}{k}-\frac{1}{k+1}\)

Vậy \(A=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2017^2}+\frac{1}{2018^2}}\)

\(=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)

\(=2016+\frac{1}{2}-\frac{1}{2018}=2016\frac{504}{1009}\)

19 tháng 6 2019

min của \(A=a^2+b^2+c^2-2\sqrt{3abc}\) chứ nhỉ

19 tháng 6 2019

à nhầm

23 tháng 8 2016

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Ta tách VT=A+B và xét

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\text{∑}\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\text{∑}\left(3a-\frac{3ab}{2}\right)\)

\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\text{∑}\left(1-\frac{b^2}{1+b^2}\right)\ge\text{∑}\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\text{∑}ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)

(Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))

Dấu = khi a=b=c=1

11 tháng 1 2019

2 + 2 =22