Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Mệnh đề phủ định của "20 là số hợp số" là
Cho mệnh đề chứa biến P(x;y): "−2x+y≥0". Giá trị nào sau đây của biến x;y làm cho P(x;y) trở thành một mệnh đề đúng?
Hình vẽ nào sau đây có phần không bị gạch minh họa cho tập hợp (1;4]?
Hệ bất phương trình nào sau đây không là hệ bất phương trình bậc nhất hai ẩn?
Cặp số nào sau đây là nghiệm của bất phương trình 2x−3y≤6(x−y)+3x−2y+4?
Giá trị của biểu thức A=sin215∘+sin275∘+cos120∘ là
Cho ΔABC có b=6,c=8,A=60∘. Độ dài cạnh a là
Mệnh đề phủ định của "Hà Nội là thủ đô của nước Việt Nam" là
Cho ba tập hợp A=[−2;2],B=[1;5],C=[0;1). Khi đó tập (A\B)∩C là
Cho A là tập hợp các số tự nhiên chẵn không lớn hơn 10, B={n∈Nn≤6}, C={n∈N4≤n≤10}. Tập hợp A∩(B∪C) là
Miền nghiệm (phần không tô màu) trong hình vẽ biểu diễn tập nghiệm của hệ bất phương trình nào dưới đây?
Phần tô màu (không bao gồm đường thẳng Δ) trong hình vẽ là miền nghiệm của bất phương trình nào sau đây?
Cho A là tập hợp các học sinh lớp 10 đang học ở trường X và B là tập hợp các học sinh đang học môn Tiếng Anh của trường X.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A∩B là tập hợp các học sinh lớp 10 học môn Tiếng Anh ở trường X. |
|
b) A\B là tập hợp những học sinh lớp 10 và không học Tiếng Anh ở trường X. |
|
c) A∪B là tập hợp các học sinh lớp 10 và học sinh học môn Tiếng Anh ở trường X. |
|
d) B\A là tập hợp các học sinh học lớp 10 ở trường X nhưng không học môn Tiếng Anh. |
|
Một trò chơi chọn ô chữ đơn giản mà kết quả gồm một trong hai khả năng: Nếu người chơi chọn được chữ A thì người ấy được cộng 3 điểm, nếu người chơi chọn được chữ B thì người ấy bị trừ 1 điểm. Người chơi chỉ chiến thắng khi đạt được số điểm tối thiểu là 20. Gọi x,y theo thứ tự là số lần người chơi chọn được chữ A và chữ B.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng số điểm người chơi đạt được khi chọn chữ A là 3x, tổng số điểm người chơi bị trừ khi chọn chữ B là y. |
|
b) Bất phương trình bậc nhất hai ẩn x,y trong tình huống người chơi chiến thắng là 3x−y≤20. |
|
c) Người chơi chọn được chữ A 7 lần và chọn được chữ B 1 lần thì người đó vừa đủ điểm giành chiến thắng trò chơi. |
|
d) Người chơi chọn được chữ A 8 lần và chọn được chữ B 3 lần thì người đó vừa đủ điểm giành chiến thắng trò chơi. |
|
Cho cosα=−43 với 0∘<α<90∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) sin2α=167. |
|
b) sinα<0. |
|
c) sinα=−47. |
|
d) cotα=−737. |
|
Một công ty viễn thông tính phí 1 000 đồng mỗi phút gọi nội mạng và 2 000 đồng mỗi phút gọi ngoại mạng. Gọi x và y lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng và Bình muốn số tiền phải trả cho tổng đài luôn thấp hơn 100 nghìn đồng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Số tiền Bình phải trả cho cuộc gọi nội mạng mỗi tháng là x (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là 2y (nghìn đồng) và x∈N,y∈N. |
|
b) x+2y<100. |
|
c) Nếu 50 và 20 lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng thì số tiền phải trả cho tổng đài thấp hơn 100 nghìn đồng. |
|
d) Nếu 50 và 25 lần lượt là số phút gọi nội mạng, ngoại mạng trong một tháng thì số tiền phải trả cho tổng đài vượt quá mục tiêu của Bình. |
|
Cho tập hợp A=[1−m;4−m], B=[7−4m;+∞) (m là tham số). Có tất cả bao nhiêu giá trị nguyên của m thuộc đoạn [−10;10] để A∩B=∅?
Trả lời:
Lớp 10A có 21 em thích học Toán, 19 em thích học Văn và có 18 em thích học tiếng Anh. Trong số đó có 9 em thích học cả Toán lẫn Văn, 7 em thích học cả Văn lẫn tiếng Anh, 6 em thích học cả Toán lẫn tiếng Anh và có 4 em thích học cả ba môn Toán, Văn, Anh, không có em nào không thích một trong ba môn học trên. Trong lớp 10A có bao nhiêu học sinh?
Trả lời:
Trong hệ tọa độ Oxy, cho bất phương trình 2x+y≥2 có miền nghiệm D. Dựng hình vuông ABCO có cạnh a nằm trong góc phần tư thứ nhất, với O(0;0) là gốc tọa độ. Biết rằng diện tích phần chung giữa miền nghiệm D và hình vuông ABCO bằng 2022. Tính a (làm tròn kết quả đến hàng đơn vị).
Trả lời:
Một hộ nông dân trên cao nguyên định trồng cà phê và ca cao trên diện tích 10 ha. Nếu trồng cà phê thì cần 20 công và thu về 10 triệu đồng trên diện tích mỗi ha, nếu trồng cacao thì cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Cần trồng x ha cà phê và y ha cacao để thu được lợi nhuận lớn nhất, biết rằng số công trồng cà phê không vượt quá 100 công và số công trồng ca cao không vượt quá 180 công. Tính x+y.
Trả lời:
Cho x,y thoả mãn hệ ⎩⎨⎧x+2y−100≤02x+y−80≤0x≥0y≥0. Khi biểu thức P=(x;y)=40000x+30000y đạt giá trị lớn nhất, tính x+y.
Trả lời:
Một ô tô muốn đi từ A đến C nhưng giữa A và C là một ngọn núi cao nên ô tô phải đi thành hai đoạn từ A đến B rồi từ B đến C, các đoạn đường tạo thành tam giác ABC có AB=15 km, BC=20 km và ABC=120∘. Giả sử ô tô chạy 5 km tốn một lít xăng, giá một lít xăng là 20 000 đồng.
Nếu người ta làm một đoạn đường hầm xuyên núi chạy thẳng từ A đến C, khi đó ô tô chạy trên con đường này sẽ tiết kiệm được số tiền là bao nhiêu nghìn đồng so với chạy trên đường cũ? (Làm tròn kết quả đến hàng phần mười)
Trả lời: